一种基于双层生成对抗网络的对抗样本生成方法.pdf
邻家****mk
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于双层生成对抗网络的对抗样本生成方法.pdf
本发明提出了一种基于双层生成对抗网络的对抗样本生成方法,涉及人工智能安全领域。该方法采用第一层条件生成对抗网络、特征提取器、第二层生成对抗网络和目标网络;条件生成对抗网络用于生成新的样本,其鉴别器不但要分辨生成样本的真实性,还对其类别进行判定;特征提取器用于提取原始样本隐藏层特征,生成具有对抗先验的扰动;第二层生成对抗网络用于生成对抗扰动,鉴别器分析对抗样本的真实性及其与条件生成对抗网络生成样本的相似性;目标网络用于验证对抗样本的攻击成功率。本发明利用两层神经网络分别生成特定类别的样本和对抗扰动,能够实现
利用对抗生成网络生成对抗样本的方法及装置.pdf
本说明书实施例提供一种利用对抗生成网络生成对抗样本的方法,其中对抗生成网络包括:预先训练好的、用于针对业务对象执行N分类任务的分类器,用于生成对应于各类别真实样本的模拟样本的生成器,以及对应于N个类别的N个判别器,其中第i个判别器用于判别输入其中的样本是否属于第i个类别下的真实样本。在该方法中,可以实现对生成器和判别器的训练,进而利用其中训练好的生成器生成具有指定真实类别,但会被上述分类器预测为其他类别的对抗样本,同时,可以实现高效、快捷地生成大批量的优质对抗样本。
基于生成对抗网络的恶意软件对抗样本生成综述.docx
基于生成对抗网络的恶意软件对抗样本生成综述标题:基于生成对抗网络的恶意软件对抗样本生成综述摘要:近年来,恶意软件的数量和复杂性迅速增加,给信息安全带来了巨大挑战。为了有效应对恶意软件的威胁,研究人员提出了各种对抗性技术。生成对抗网络(GAN)作为一种强大的生成模型,被广泛应用于恶意软件对抗样本的生成。本文综述了基于GAN的恶意软件对抗样本生成的研究现状和发展趋势,包括GAN的基本原理、GAN在恶意软件对抗样本生成中的应用、现有的研究方法以及存在的挑战和未来发展方向。关键词:生成对抗网络,恶意软件,对抗样本
基于生成对抗网络的遥感样本生成方法.docx
基于生成对抗网络的遥感样本生成方法随着遥感技术的不断发展,遥感数据已成为地球科学研究和环境监测等领域不可或缺的一种数据源。然而,由于遥感数据的特殊性,数据获取和处理仍然需要耗费大量的资源和时间。因此,如何有效地利用遥感数据并提高其有效性是解决当今问题的关键。生成对抗网络(GAN)通过学习一个生成器和一个判别器,可以生成出与真实数据类似的“假”数据。因此,基于生成对抗网络的遥感样本生成方法可以在一定程度上解决遥感数据获取和处理方面的难题。本文将介绍基于生成对抗网络的遥感样本生成方法及其应用。1.生成对抗网络
基于生成对抗网络的黑盒恶意软件检测对抗样本生成方法及装置.pdf
本发明公开了一种基于生成对抗网络的黑盒恶意软件检测对抗样本生成方法及装置,方法包括下述步骤:根据PE文件结构特性设计基于集成策略的恶意软件对抗性扰动方法,该扰动方法添加扰动的方式为:修改DOS头、节区末尾填充、文件末尾填充;构建基于生成对抗网络的黑盒恶意软件对抗样本生成模型;在模型攻击过程中,输入恶意软件到黑盒恶意软件对抗样本生成模型,利用训练过的生成器模型G在很短的时间内生成对抗性样本。本发明添加对抗性扰动到恶意软件的非功能区域,从而实现了保留恶意功能和样本的真实性,这样不仅可以省去检验恶意软件样本在沙