基于多尺度融合的点云特征增强方法和装置.pdf
是立****92
亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于多尺度融合的点云特征增强方法和装置.pdf
本发明提供一种基于多尺度融合的点云特征增强方法和装置。其中方法包括:基于目标对象的原始点云构建目标对象的至少一个不同尺度规模的子点云;其中不同尺度规模的子点云中点的数量小于原始点云中点的数量;基于预先设定的邻域点的数量分别确定至少一个不同尺度规模的子点云中每个点的邻域点;基于所确定的邻域点分别确定至少一个不同尺度规模的子点云中每个点的局部特征;基于至少一个不同尺度规模的子点云中每个子点云的所有点的局部特征,确定每个子点云的全局特征,基于所确定的至少一个不同尺度规模的子点云中每个子点云的全局特征,对原始点云
基于多尺度融合模块和特征增强的杂草检测方法.docx
基于多尺度融合模块和特征增强的杂草检测方法标题:基于多尺度融合模块和特征增强的杂草检测方法摘要:随着农业现代化的快速发展,杂草的生长给农作物的正常生长和产量带来了很大的威胁。为了解决这个问题,本文提出了一种基于多尺度融合模块和特征增强的杂草检测方法。该方法能够提高杂草检测的准确性和鲁棒性,为农业生产提供有力的支持。引言:杂草是指在农田中生长的不受人工种植控制的植物。它们具有生长快、繁殖力强等特点,会与农作物争夺阳光、水分和养分资源,严重影响农作物的生长和产量。因此,杂草的检测对于农田管理和农作物保护起着重
基于多尺度特征融合的三维点云语义分割方法.pdf
本发明公开了一种基于多尺度特征融合的三维点云语义分割方法。针对现有方法中单一编码器存在的感受野受限、难以适应不同类别预测的问题,本发明在网络编码器部分引入多支具有不同感受野的子编码器用于编码不同尺度的特征,为了在保证子编码器感受野大小的同时减少计算量和显存占用,本发明使用空洞卷积提取点云特征。相比于已有的基于深度学习框架的三维点云语义分割方法,本发明方法更好的保留了属于点云集合的不同尺度的高维特征,因此可以适应不同尺度的地物的预测,实现比已有方法更高的语义分割精度。
基于多尺度特征动态融合的点云配准算法.docx
基于多尺度特征动态融合的点云配准算法目录一、内容描述................................................21.1背景介绍.............................................21.2研究目的与意义.......................................31.3研究方法与流程.......................................4二、相关工作.....................
一种基于多尺度融合模块和特征增强的杂草检测方法.pdf
一种基于多尺度融合模块和特征增强的杂草检测方法,对预处理的作物杂草的数据进行训练并评估SSD网络模型,针对SSD网络模型参数大,小目标检测效果差,作物与杂草检测精度低的问题进行改进,将轻量网络MobileNet作为SSD模型的特征提取网络,并设计了多尺度融合模块,将浅层特征图先通过通道注意力机制增强图像中的关键信息,再将特征图经过不同膨胀率大小的扩张卷积扩大感受野,最后将两条分支进行特征融合,让用于检测小目标的浅层特征图在包含较多小目标细节信息的同时,还可以包含丰富的语义信息;在此基础上对输出的特征图经过