图像处理模型的训练方法和装置、存储介质及电子设备.pdf
努力****梓颖
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
图像处理模型的训练方法和装置、存储介质及电子设备.pdf
本发明公开了一种图像处理模型的训练方法和装置、存储介质及电子设备。其中,该方法包括:获取每个训练样本在每个迭代周期内进行模拟训练后得到的样本损失值;根据获取到的训练样本在多个迭代周期内得到的多个样本损失值,确定训练样本所属的样本类型,其中,样本类型用于指示训练样本在模拟训练中达到收敛条件的收敛程度;为目标样本类型的目标训练样本添加关注标记,并利用目标训练样本对原始模型进行模型训练,直至得到达到与目标样本类型相匹配的第二收敛条件的目标模型,其中,关注标记用于指示增加目标训练样本在每个迭代周期内的模型训练中的
图像分类模型的训练方法、装置、电子设备和存储介质.pdf
本公开提供了一种图像分类模型的训练方法、装置、电子设备和存储介质,涉及人工智能领域,具体涉及深度学习领域和图像处理领域,可应用于异常图像的检测场景等。图像分类模型的训练方法包括:采用已标注数据集对图像分类模型进行训练,得到初始模型;迭代地执行以下更新操作,直至更新后的初始模型达到收敛条件:采用初始模型从未标注数据中获得备选扩充数据;以及根据备选扩充数据更新已标注数据集和初始模型;其中,图像分类模型的训练方法还包括在在迭代地执行更新操作的过程中:确定针对标注类别的预测概率低于第一预定概率的目标数据;以及周期
图像处理方法、图像处理模型训练方法、装置及存储介质.pdf
本申请公开了图像处理方法、图像处理模型训练方法、装置及存储介质,涉及人工智能领域的计算机视觉、深度学习等领域。具体实现方案为:将所述待编辑图像在生成对抗网络的S空间进行编码,获取第一隐编码;其中,所述生成对抗网络为基于样式的生成对抗网络;将所述文本描述信息进行编码,获取文本图像的文本编码,并将所述文本编码在所述S空间上进行映射,获取第二隐编码;将所述第一隐编码和第二隐编码进行距离优化,获取满足距离要求的目标隐编码;基于所述目标隐编码生成所述目标图像。能够在编辑图像的某一部分时对其它无需编辑的部分产生的影响
模型训练及图像处理方法、装置、电子设备和存储介质.pdf
本公开实施例公开了一种模型训练及图像处理方法、装置、电子设备和存储介质,模型训练方法包括:获取多个类别的样本图像;利用样本图像对预设的教师模型进行训练,得到预训练的教师模型;对样本图像中不同类别的图像均衡采样,得到采样的样本图像;利用采样的样本图像对预设的学生模型训练,以及对预训练的教师模型进行知识蒸馏,得到训练后的学生模型。
图像分类模型的训练方法、装置、电子设备及存储介质.pdf
本公开提供了一种图像分类模型的训练方法、装置、电子设备及存储介质,包括:获取目标对象对应的横切图像和纵切图像所对应的视觉特征;基于图像分类模型包括的图间变换器,将所述视觉特征映射至第一属性图包括的各目标节点,确定各目标节点的属性特征的预测概率;基于图像分类模型包括的图内变换器,对所述分类图中各分类节点进行特征融合,确定各分类节点对应的分类预测概率;基于所述各目标节点的属性特征的预测概率,以及各目标节点的属性特征的标签确认第一子损失;基于所述各分类节点对应的分类预测概率,以及所述目标对象的分类标签确认第二子