一种基于空间-光谱联合低秩的高光谱与多光谱图像融合方法.pdf
邻家****ng
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于空间-光谱联合低秩的高光谱与多光谱图像融合方法.pdf
本发明属于高光谱与多光谱图像融合领域,具体提供一种基于空间‑光谱联合低秩的高光谱与多光谱图像融合方法,通过对空间‑光谱维度的非局部低秩表示和相关优化方法实现高光谱与多光谱图像的融合。在尽可能减少光谱失真的前提下,利用已知多光谱图像丰富的空间信息进行非局部自相似数据块的提取,接着考虑重构图像空间和光谱维度的低秩特性,采用低变换张量秩的方式探索图像中的相似性和相关性,最后通过分段优化的思想和交替方向乘子法迭代求解目标优化函数实现高光谱与多光谱图像的融合。本发明通过非局部联合低秩实现了高光谱与多光谱图像的有效融
基于CNN的高光谱和多光谱图像融合方法研究.docx
基于CNN的高光谱和多光谱图像融合方法研究摘要:随着高光谱和多光谱技术在农业、林业、气象等领域中的广泛应用,高光谱和多光谱图像的融合技术成为了研究热点。本文针对高光谱和多光谱图像融合的问题,提出了一种基于CNN的融合方法。首先,利用卷积神经网络提取高光谱和多光谱图像的特征表示。其次,通过卷积神经网络对高光谱和多光谱图像的特征进行融合,得到融合后的图像。最后,通过实验验证了该方法的有效性和优越性,在融合图像的质量和准确性方面都有明显的提高。关键词:高光谱;多光谱;图像融合;卷积神经网络引言:高光谱和多光谱技
基于低秩表示的空谱联合高光谱图像分类模型与方法.docx
基于低秩表示的空谱联合高光谱图像分类模型与方法基于低秩表示的空谱联合高光谱图像分类模型与方法摘要:高光谱图像在农业、环境监测、资源调查等领域具有重要的应用价值。然而,由于高光谱图像数据具有高维的特点,传统的分类方法面临着维度灾难和计算复杂度高的问题。为了解决这一问题,本文提出了一种基于低秩表示的空谱联合高光谱图像分类模型与方法。该方法通过将高光谱图像维度降低到一个较低的子空间中,然后利用低秩表示进行分类,从而提高分类效果和计算效率。实验结果表明,与传统方法相比,该方法在高光谱图像分类准确率和计算效率上具有
基于低秩表示的高光谱图像分类方法研究.docx
基于低秩表示的高光谱图像分类方法研究标题:基于低秩表示的高光谱图像分类方法研究摘要:高光谱图像具有较高的光谱分辨率,可以提供大量详细的光谱信息,因此在遥感、地质勘探等领域有着广泛的应用。然而,高光谱图像由于其高维度和复杂性,对图像分类任务提出了挑战。本文针对高光谱图像分类的问题,提出了一种基于低秩表示的分类方法。该方法通过降低图像的维度和复杂性,实现高光谱图像的有效分类。实验结果表明,该方法在高光谱图像分类任务中取得了较好的性能。关键词:高光谱图像;图像分类;低秩表示1.引言高光谱图像是一种具有几十至几百
基于稀疏表示的高光谱与多光谱图像融合研究.docx
基于稀疏表示的高光谱与多光谱图像融合研究基于稀疏表示的高光谱与多光谱图像融合研究摘要:高光谱(HSI)图像和多光谱(MSI)图像融合是一项重要的图像处理技术,具有广泛的应用前景。本文提出了一种基于稀疏表示的方法,用于实现高光谱与多光谱图像的融合。该方法利用稀疏表示的优势,能够有效地提取图像的潜在特征,从而实现图像融合的目的。实验结果表明,本文提出的方法在保持图像细节的同时,能够获得更好的融合效果。关键词:高光谱图像,多光谱图像,图像融合,稀疏表示1.引言高光谱图像和多光谱图像分别具有不同的特点。高光谱图像