预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

网络安全中机器学习的应用论文网络安全中机器学习的应用论文范文在个人成长的多个环节中,大家都写过论文,肯定对各类论文都很熟悉吧,通过论文写作可以培养我们的科学研究能力。一篇什么样的论文才能称为优秀论文呢?下面是小编帮大家整理的网络安全中机器学习的应用论文范文,欢迎阅读与收藏。摘要:伴随计算机技术不断发展,各国以及全球都构建了全面的信息网络交流与共享系统,其中网络安全则关系到国家利益与发展,保障网络环境的稳定性能够为国家进步提供一个相对稳定发展基础。但是在网络信息系统构建的过程中,还有许多恶性手段导致网络安全性受到威胁,因此需要提升网络安全保障手段的有效性。本文从机器学习概述着手,对现阶段存在的主要网络安全进行讨论,分析机器学习在网络安全中的应用价值,最终阐述了几方面的具体应用,以期能够为后续网络安全保障工作开展提供参考价值。关键词:机器学习;网络安全;应用计算机技术在现阶段各领域发展进行了有效渗透,成为适用性广泛、技术性较强、必要性突出的高新技术之一。但是实际上在许多领域的计算机技术开发程度较低,导致网络安全保障工作中存在许多隐患,那么采取措施对网络安全进行维护,保障网络信息体系稳定性是目前十分急切的任务。机器学习在网络安全保障任务开展中发挥了十分重要的推动作用,因此,网络安全相关技术部门需要对机器学习以及网络安全的技术内容进行深入探析并掌握,进而对机器学习的应用价值进行明确,进而针对性地展开应用,使网络安全保障工作得到有效落实,推动国家网络体系稳定发展。1机器学习概述机器学习作为人工智能的核心体现,简单来看即为一组可以通过经验数据对系统本身性能进行一定程度优化的算法合集。机器学习的基本方式即指使计算机对人类行为进行模拟,并通过学习的方式,使计算机功能与知识体系更加人性化、智能化、丰富化发展。机器学习在实际研究中具有许多方向,在整体上来看,机器学习与推理过程具有十分紧密的联系,所以在机器学习方式的分类上具有一定的共识。考虑到该学习的内容复杂性、范围广泛性、学科交叉性等特点,其包含了多样技术与知识体系的融合渗透,比方说概率论、统计学、逼近学等等。进行具体分类主要有五种,一是从学习方式不同包括了实例学习、类比学习、传授学习、机械学习、归纳学习等;二是由知识获得表现的形式差异,包括决策树、形式文法、逻辑表达式、图和网络、计算机程序、框架和模式以及其他的编程形式等;三是根据应用领域内容,包含自然语言、认知模拟、数据挖掘、故障诊断、专家系统等;四是从综合分类角度,包括了类比算法、遗传算法、连接学习、分析学习等;五即是学习形式分类,有监督与非监督之分。2主要的网络安全研究2.1网络安全概述网络安全的定义较广,一般定义下其指的是网络系统硬软件以及内部数据信息得到具体的保障,不会在运转过程中受到一些突发的、恶意的、顽固的因素影响,从而对网络系统造成数据盗取、信号干扰以及体系破坏,保障网络系统可以顺利、安全运转,提供更加优质的网络服务。一般情况下,计算机可能出现的网络威胁问题主要可分为主动攻击与被动攻击。前者是指在主动意识作用下,有具体意识、具体目标地对网络报文进行盗用与修改,安装恶意程序如计算机病毒、木马、逻辑炸弹、流氓顽固软件等等,阻碍正常程序的运转,还有通过主动攻击行为将大数量分组传送到网络运行服务器中,进而使其拒绝正常服务行为,更严重的话会出现程序瘫痪状况。2.2网络安全技术分析(1)恶意软件检测技术:现阶段,网络安全问题统计数据显示恶意软件问题是其中占比最大的网络威胁,其常在未经过用户通过权限状态下,在后台进行系统安装与自动运行,进而对系统秩序进行破坏、对系统存储进行顽固占用,为某些不正当行为网络提供便利。在恶意软件发展前期,其具有病毒的一些特征,因此可通过病毒查杀软件进行检测与清理,但是伴随技术发展,恶意软件也得到了升级。针对该问题出现了特征码技术、驻留式软件技术、虚拟机技术等等,第一个技术是现阶段持续使用的技术,其技术要点即对恶意软件的特征值进行分析,基于该类特征值,对计算机中的软件进行扫描检测,根据特征值出现的情况进行恶意软件查杀。此外,虚拟机技术也是现阶段发展前景较好的技术之一,其主要是为恶意软件模型提供一个虚拟运行环境,对其运行特征进行更加全面的把握,使检测效果更加准确。(2)入侵检测技术:该部分检测不仅需要对已经入侵的恶意行为进行检测,还需要对具有入侵趋势、正在进行入侵的恶意行为进行检测。现阶段存在的入侵检测技术有特异检测与异常检测两类。前者还被叫作误用检测,其是把可识别的入侵使用特定的方式进行表达,构成一个具有特征标记的网络数据库,接着对待测的输入数据展开分析,与数据库中的特征展开对比,若是具有一定符合度,则说明受到了入侵行为。而后者与之最大的区别就是无须构建一个异常数据库,而是对以正常活动轨迹着手,排查出非正常的网络行为