预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN106778902A(43)申请公布日2017.05.31(21)申请号201710000628.5(22)申请日2017.01.03(71)申请人河北工业大学地址300130天津市红桥区丁字沽光荣道8号河北工业大学东院330#(72)发明人张满囤徐明权于洋郭迎春阎刚单新媛米娜于明(74)专利代理机构天津翰林知识产权代理事务所(普通合伙)12210代理人胡安朋(51)Int.Cl.G06K9/62(2006.01)G06K9/00(2006.01)G06N3/08(2006.01)权利要求书3页说明书10页附图3页(54)发明名称基于深度卷积神经网络的奶牛个体识别方法(57)摘要本发明基于深度卷积神经网络的奶牛个体识别方法,涉及图像数据处理中的图像识别方法,是一种采用深度学习当中卷积神经网络提取特征,结合对奶牛纹理特征实现对奶牛个体有效识别的方法,步骤是:奶牛数据的采集;对训练集和测试集的预处理;设计卷积神经网络;训练卷积神经网络;生成识别模型;利用识别模型识别奶牛个体。本发明方法克服了采用图像处理技术对奶牛图像进行处理的现有算法单一,没有充分利用奶牛本身所具有的条纹特点来与图像处理和模式识别技术进行很好的结合,导致奶牛识别准确率低的缺陷。CN106778902ACN106778902A权利要求书1/3页1.基于深度卷积神经网络的奶牛个体识别方法,其特征在于:是一种采用深度学习当中卷积神经网络提取特征,结合对奶牛纹理特征实现对奶牛个体有效识别的方法,步骤如下:第一步,奶牛数据的采集:使用摄像设备,分别采集20头行走奶牛的奶牛视频,作为实验数据,使用光流法或帧间差分法对输入的奶牛视频数据进行奶牛躯干图像提取,形成图像数据集,每一头奶牛都有自身的图像数据集,对得到的所有图像数据集进行随机分类,形成训练集和测试集,至此完成奶牛数据的采集;第二步,对训练集和测试集的预处理:通过caffe框架,使用事先已经写好的生成leveldb数据库的脚本文件,分别对上述第一步得到的训练集和测试集进行处理,生成对卷积神经网络进行训练所需的数据格式,再对已经处理好的训练集和测试集在做均值计算,形成训练集均值文件和测试集均值文件,至此完成对训练集和测试集的预处理;第三步,设计卷积神经网络:所设计的卷积神经网络由输入层、第一层~第七层和输出层构成,各层的结构如下:输入层是数据的入口,在输入层需要选择每一次训练数据的大小,每一次训练数据的大小是根据GPU的计算能力以及显存的大小而设定,此外,还需要对leveldb数据库的路径和均值文件路径进行设置,设置规则根据生成文件的路径设计即可;第一层包含一个真正的卷积层和一个采样层,该卷积层的卷积核设计为11×11,步长为默认值2,该卷积核的个数为96,扩充边缘默认为0,不扩充,即pad设为0,使用高斯算法进行权值初始化,每个神经元与输入特征图像指定一个11×11邻域进行卷积,特征图的计算公式如公式(1)和(2):W1=(W0+2×pad-kenerl_size)/2+1(1)H1=(H0+2×pad-kenerl_size)/2+1(2)其中W0和H0为上一层输出特征图的大小,W1和H1为通过当前卷积层所求出的特征图的大小,pad为对边缘进行扩充的值,kenerl_size为卷积和大小,输入特征图的大小为W0×H0=256×256,输入的特征图在经过卷积核卷积后大小变为(256-11)/2+1=123,共包含96个不同的特征图,因此经过卷积后得到的特征图映射的大小为123×123×96,次抽样层是对由上一步卷积结果用3×3的邻域和跳跃间隔为2进行最大值进行下采样得到,计算公式如公式(1)和公式(2)所示,经过采样后特征图的大小变为61×61,由于次抽样不改变特征图的数目,即特征图映射的大小为61×61×96,该神经网络支持单通道和三通道输入,对于三通道图像,该卷积层的卷积核也是三通道,卷积核分别去卷积每一个通道,在进行卷积运算后,需要对特征图映射的局部区域进行归一化,达到“侧抑制”的效果,即对每一个输入值都除以J,如计算公式(3)所示:其中α、β为默认值,α=0.0001、β=0.75,n为局部尺寸的大小,设置为5,xi为输入值,求和将在当前值处于中间位置的局部区域内进行,最后在经过Relu函数进行激活处理,如计算公式(4)所示:2CN106778902A权利要求书2/3页其中x为输入数据;第二层同样包含一个真正的卷积层和一个采样层,该层的卷积核大小为11,步长为默认值1,卷积核个数为128,扩充边缘默认为2,需要进行扩充,每个神经元与输入特征图像指定的一个11×11邻域进行卷积,由公式(1)和公式(2)计算可得特征图的大小为(61+2×2