预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

旋转问题 考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。 旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。 直线的旋转 C A B N M (第1题) 1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设. (1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°, 根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5. (2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC‖ED, ∵CE‖AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30度, ∴AB=4,AC=2, ∴AO==. 在Rt△AOD中,∠A=30°, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形. 3、(2009年北京市) 在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1) (1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明; ②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围. 提示:(1)运用三角形全等, (2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。 4、(2009黑龙江大兴安岭) 已知:在中,,动点绕的顶点逆时针旋转,且,连结.过、的中点、作直线,直线与直线、分别相交于点、. (1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明). 图2 图3 图1 (N) (2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明. 角的旋转 5、(2009年中山)(1)如图1,圆心接中,,、为的半径,于点,于点求证:阴影部分四边形的面积是的面积的. (2)如图2,若保持角度不变, 求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的. 6、(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形. (1)求证:梯形是等腰梯形; (2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式; (3)在(2)中: ①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数; ②当取最小值时,判断的形状,并说明理由. A D C B P M Q 60° 6、(2009年重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式; (2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G,在位于