估计方程近似解的基本思想.doc
ys****39
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
估计方程近似解的基本思想.doc
估计方程近似解的基本思想青岛七中江华“估算”在求解实际生活中一些较为复杂的方程时应用广泛。在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0<x2。这是因为,当ax12+bx1+c<0(或>0)而ax22+bx2+c>0(或<0)时,在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或
估计方程近似解的基本思想.doc
估计方程近似解的基本思想青岛七中江华“估算”在求解实际生活中一些较为复杂的方程时应用广泛。在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0<x2。这是因为,当ax12+bx1+c<0(或>0)而ax22+bx2+c>0(或<0)时,在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或
估计方程近似解的基本思想.doc
估计方程近似解的基本思想青岛七中江华“估算”在求解实际生活中一些较为复杂的方程时应用广泛。在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0<x2。这是因为,当ax12+bx1+c<0(或>0)而ax22+bx2+c>0(或<0)时,在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或
估计方程近似解的基本思想 (2).doc
估计方程近似解的基本思想青岛七中江华“估算”在求解实际生活中一些较为复杂的方程时应用广泛。在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0<x2。这是因为,当ax12+bx1+c<0(或>0)而ax22+bx2+c>0(或<0)时,在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或
【小学中学教育精选】拓展资源:估计方程近似解的基本思想.doc
估计方程近似解的基本思想“估算”在求解实际生活中一些较为复杂的方程时应用广泛。在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0<x2。这是因为,当ax12+bx1+c<0(或>0)而ax22+bx2+c>0(或<0)时,在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或小于0),其