预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年内蒙古通辽实验中学高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知集合,,则中元素的个数为()A.3B.2C.1D.02、方程表示的曲线经过的一点是()A.B.C.D.3、已知等差数列满足,,则()A.B.C.D.4、已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A.B.2C.D.35、已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5B.3:4C.5:3D.4:36、在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A.B.C.2D.37、已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A.B.C.D.8、已知,设函数,若关于的不等式恒成立,则的取值范围为()A.B.C.D.9、在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列B.若是等方差数列,则是等方差数列C.是等方差数列D.若是等方差数列,则是等方差数列10、已知平面向量,且,向量满足,则的最小值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是侧面BCC1B1上的动点,且AP⊥BD1,记点P到平面ABCD的距离为d,则d的最大值为____________.12、等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.13、函数,其导函数为函数,则__________14、若函数是上的增函数,则实数的取值范围是__________.15、已知平面的法向量分别为,,若,则的值为___16、将参加冬季越野跑的名选手编号为:,采用系统抽样方法抽取一个容量为的样本,把编号分为组后,第一组的到这个编号中随机抽得的号码为,这名选手穿着三种颜色的衣服,从到穿红色衣服,从到穿白色衣服,从到穿黄色衣服,则抽到穿白色衣服的选手人数为__________三、解答题(本题共5小题,每题12分,共60分)17、如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.18、某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,19、在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.20、已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和21、已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2、答案:C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C3、答案:D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.4、答案:D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,QUOTE,故QUOTE,令,故QUOTE