预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年广东省中山市高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知椭圆的右焦点为,则正数的值是()A.3B.4C.9D.212、内角、、的对边分别为、、,若,,,则()A.B.C.D.3、若“”是“”的充分不必要条件,则实数a的取值范围为A.B.或C.D.4、设为可导函数,且满足,则曲线在点处的切线的斜率是A.B.C.D.5、已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A.B.C.D.6、在长方体中,,,则异面直线与所成角的正弦值是()A.B.C.D.7、已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.8、若曲线的一条切线与直线垂直,则的方程为()A.B.C.D.9、直线的倾斜角的大小为()A.B.C.D.10、直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()AB.C.D.二、填空题(本题共6小题,每题5分,共30分)11、设a为实数,若直线与直线平行,则a值为______.12、数列的前项和为,若,则=____________.13、以点为圆心,为半径的圆的标准方程是_____________.14、如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1600个点,其中落入白色部分的有700个点,据此可估计黑色部分的面积为______________15、已知数列的通项公式为,,设是数列的前n项和,若对任意都成立,则实数的取值范围是__________.16、命题“”的否定为_____________.三、解答题(本题共5小题,每题12分,共60分)17、如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值18、已知,,函数,直线是函数图象的一条对称轴(1)求函数的解析式及单调递增区间;(2)若,,的面积为,求的周长19、已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.20、已知抛物线的焦点到准线的距离为2.(1)求C的方程:(2)过C上一动点P作圆两条切线,切点分别为A,B,求四边形PAMB面积的最小值.21、为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了名学生的得分(得分均为整数,满分为分)进行统计,所有学生的得分都不低于分,将这名学生的得分进行分组,第一组,第二组,第三组,第四组(单位:分),得到如下的频率分布直方图(1)求图中的值,估计此次竞赛活动学生得分的中位数;(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的名学生中有多少名学生获奖参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A2、答案:C【解析】利用正弦定理可求得边的长.【详解】由正弦定理得.故选:C.3、答案:D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.4、答案:D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式5、答案:C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C6、答案:C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.7、答案:B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一