预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

谈谈数学美在数学教学中的作用第一篇:谈谈数学美在数学教学中的作用“爱美之心,人皆有之”,数学之中无处不存在着数学美:对称美、和谐美、简洁美、奇异美、对立与统一美等等,在数学教学过程中展现数学美,使学生能够感受和欣赏到数学美,(请您继续关注公文素材库www.bsmz.netn)=㏒am*㏒an,sin(a+b)=sina+sinb的错误,从某种意义上是从美学观点出发的一种本性的体现。对数学内在美的深刻理解,就得到了美的薰陶,也培养了学生的思考问题的深刻性和批判性。例3已知x1/2+x1/2=8求x2+1/x的值析解在已知条件中,求出x代入x2+1/x固然可以,但远算量大,把x1/2+x1/2看作一个整体,用“整体代入法”有:x2+1/x=x+1/x=(x1/2+x-1/2)2-2=62.这简明解法让学生从整体思维中感受到数学的整体美、完整美、结构美,培养学生的整体现,思维的全局性。“爱美之心,人皆有之”,美给人智慧,美给人享受,让我们享受数学,享受数学的美。第二篇:谈谈心理学在数学教学中的重要作用谈谈心理学在数学教学中的重要作用逸夫中学/陈麒摘自:《厦门逸夫中学》摘要:数学是集理论高度抽象化和应用具体化为一体的一门科学知识。教师在课堂上仅仅答疑解惑是不够的,必须注重对学生的心理引导,充分发挥学生主观能动性,还原学生课堂主体,激发学生寻幽探微的兴趣,这样课堂知识才能真正为学生所占有。本文拟分析如何在数学教学中有意识的引入心理学,改变传统数学教学的单一模式,通过积极创设问题情境,引导学生积极参与和主动思考,进而实现课堂教学中的“师生互动”、“生生互动”,达到最佳教学效果。关键词:数学教学,心理学,论文教学活动的根本出发点和最终归宿,就是为了解决学生与所学知识间的矛盾,而要解决这一矛盾,学生必须自身参加教师指导下的一切学习活动,如积极主动地接受有关信息,进行独立思考,并经常向老师提供反馈信息,注意学习活动的自我评价和自我调控等。学生是学习过程的主人,是认识的主体、发展的主体和处理信息的主体。因此,只有通过学生自己积极地、主动地、独立地进行学习,才能将课程知识结构转化为学生自己的认知结构和能力。学生在学习上的这种主观能动作用,是任何其它因素所不能代替的,这是学生学习活动发展的唯一的内部原因。那么,教学过程中如何发挥学生主体的积极性,使其积极、主动地参与教学活动呢?1、确立正确的教师行为。现代心理学的分析表明,认知与情感是密不可分的,有效的认知往往伴随着肯定、赞许、羡慕等积极的情感,厌烦、不满、轻视等否定的情感难以产生积极的认知,情绪、情感具有感染性,教师本身的情感状态,能对学生起着潜移默化的作用,使课堂上出现某种心理气氛。因此,在教学中教师首先应尊重学生,使自己与学生、学生与学生之间形成良好的、和谐的、民主的关系。其次,教师应成为引导学生学会寻求知识、吸取知识、运用知识,寻求机会的“向导”和“组织者”,成为深刻地理解学生观点、想法和情感特征的“知音”,这样,学生就能以极大的热情、饱满的情绪投入到教学过程中去,形成和谐、积极、友好的教学气氛。2、创设问题情境,激发学生思维的积极性。主动性的心理特征就是积极地开展思维活动,所谓“课堂气氛活跃”,真正的活跃是指学生思维活动活跃,而不是指对那种没有思考性的问题答来答去的表面热闹。思维总是在分析问题、解决问题的过程中进行的。一般的情况是,当一个人产生了必须排除某一个困难时,或是要了解某一个问题时,思维活动就活跃起来。希尔伯特有句名言:问题是数学的灵魂。在数学中概念、定理、公式及法则等虽然都是重要的,但与问题相比其重要性还不居首位,概念、定理、公式及法则等所构成的理论是数学思维的结果,而问题才是思维的开始,在数学中没有问题就不可能引起思维。心理学的分析认为,学生思维是否活跃,除了与他们对学习某知识的目的、兴趣等有关外,主要取决于他们有否解决问题的需要。“不愤不启”、“不悱不发”,“愤”和“悱”就是学生对于知识“心求迫而未得”,“口欲言而不能”的急需状态。在这种情境下,教师所讲授的原理、论证,所提出的问题就能引起学生高度的注意,积极地思维,并产生克服困难探求知识的愿望和动力。因此,在教学中教师若能给学生创设这种“愤”和“悱”的情境,即创设存在问题和发现问题的情境,就能使学生的思维活跃起来,从而生动活泼地、主动地去探求和掌握知识。例如,在讲授“平行线的判定”时,可以这样给学生提出问题:“如果你面前有两条直线,问你这两条直线是不是平行线?你如何作出判断呢?”这时学生会回答,“我就看这两条直线是不是相交,如果不相交,那么这两条直线就是平行线。”然后教师就在黑板上画出两条眼睛看见是不相交的直线,让学生作出判断,学生会不加思索的判断为平行线。于是教师提出疑问:“你能肯定地说这两条直线是不相交的直线吗?我们现在看