预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届上海市东实验学校高二数学期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、某种产品的广告费支出与销售额(单位:万元)之间的关系如下表:245683040605070若已知与的线性回归方程为,那么当广告费支出为5万元时,随机误差的效应(残差)为万元(残差=真实值-预测值)A.40B.30C.20D.102、已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A.B.C.D.3、在等差数列中,已知,则()A.4B.8C.3D.64、已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A.B.C.D.5、设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1B.C.D.6、已知数列满足,则()A.2B.C.1D.7、已知空间向量,,则()A.B.19C.17D.8、已知数列中,,(),则()A.B.C.D.29、若函数在上有两个极值点,则下列选项中不正确的为()A.B.C.D.10、若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4B.-4C.2D.-2二、填空题(本题共6小题,每题5分,共30分)11、已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________12、过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______13、银行一年定期的存款的利率为p,如果将a元存入银行一年定期,到期后将本利再存一年定期,到期后再存一年定期……,则10年后到期本利共________元14、在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程15、经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________16、类比教材中推导球体积公式的方法,试计算椭圆T:绕y轴旋转一周后所形成的旋转体(我们称为橄榄球)的体积为________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值18、如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值19、已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.20、已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.21、函数,.(1)讨论函数的单调性;(2)若在上恒成立,求实数的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】分析:把所给的广告费支出5万元时,代入线性回归方程,做出相应的销售额,这是一个预测值,再求出与真实值之间有一个误差即得.详解:与的线性回归方程为,当时,50,当广告费支出5万元时,由表格得:,故随机误差的效应(残差)为万元.故选D.点睛:本题考查回归分析的初步应用,考查求线性回归方程,考查预测y的值,是一个综合题2、答案:D【解析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.3、答案:B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B4、答案:B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5、答案:C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C6、答案:D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得