预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省南通市海安高级中学高二数学期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、已知等差数列且,则数列的前13项之和为()A.26B.39C.104D.523、一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线4、若,则实数的取值范围是()A.B.C.D.5、已知、,直线,,且,则的最小值为()A.B.C.D.6、如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A.B.C.D.7、直线的倾斜角为()AB.C.D.8、若(为虚数单位),则复数在复平面内的点位于()A.第一象限B.第二象限C.第三象限D.第四象限9、执行如图所示的算法框图,则输出的结果是()A.B.C.D.10、《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺B.40尺C.6尺D.60尺二、填空题(本题共6小题,每题5分,共30分)11、已知某次数学期末试卷中有8道4选1的单选题12、希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.13、两条平行直线与的距离是__________14、根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行,一条平行于对称轴的光线经该抛物线反射后会经过抛物线的焦点.如图所示,从沿直线发出的光线经抛物线两次反射后,回到光源接收器,则该光线经过的路程为___________.15、在中,若面积,则______16、如图,把椭圆的长轴八等分,过每个分点作轴的垂线交椭圆的上半部分于,,,七个点,是椭圆的一个焦点,则的值为__________三、解答题(本题共5小题,每题12分,共60分)17、已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值18、已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.19、在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值20、已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由21、已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的解析式及单调递减区间;(2)若函数无零点,求的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.2、答案:A【解析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A3、答案:C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆