预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东省和平县数学八上期末经典模拟试题含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单选题(本题共10小题,每题3分,共30分)1、一次函数上有两点和,则与的大小关系是()A.B.C.D.无法比较2、直线l上有三个正方形A、B、C放置如图所示,若正方形A、C的面积分别为1和12,则正方形B的面积为().A.11B.12C.13D.3、甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最稳定的是()A.甲B.乙C.丙D.丁4、一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A.4.7B.5.0C.5.4D.5.85、下列各式:,,,,其中分式共有几个().A.1B.2C.3D.46、如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.7、如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A.B.C.D.8、已知,,是的三条边长,则的值是()A.正数B.负数C.0D.无法确定9、若x,y的值均扩大为原来的2倍,下列分式的值保持不变的是()A.B.C.D.10、已知点关于x轴对称点的坐标是(-1,2),则点的坐标为()A.(1,2)B.(1,-2)C.(2,-1)D.(-1,-2)二、填空题(本题共6小题,每题3分,共18分)11、在平面直角坐标系中,点B(1,2)是由点A(-1,2)向右平移a个单位长度得到,则a的值为______12、一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为_____.13、如图,边长为的菱形中,.连结对角线,以为边作第二个菱形,使.连结,再以为边作第三个菱形,使,一按此规律所作的第个菱形的边长是__________.14、小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多_____吨.15、若是完全平方式,则k的值为_______.16、一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.三、解答题(本题共6小题,每题12分,共72分)17、如图,在中,点是上一点,分别过点、两点作于点,于点,点是边上一点,连接,且.求证:.18、某商场计划销售甲、乙两种产品共件,每销售件甲产品可获得利润万元,每销售件乙产品可获得利润万元,设该商场销售了甲产品(件),销售甲、乙两种产品获得的总利润为(万元).(1)求与之间的函数表达式;(2)若每件甲产品成本为万元,每件乙产品成本为万元,受商场资金影响,该商场能提供的进货资金至多为万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.19、小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线和线段分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;(3)求线段的函数关系式;(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?20、如图1,△ABC为等边三角形,点E、F分别在BC和AB上,且CE=BF,AE与CF相交于点H.(1)求证:△ACE≌△CBF;(2)求∠CHE的度数;(3)如图2,在图1上以AC为边长再作等边△ACD,将HE延长至G使得HG=CH,连接HD与CG,求证:HD=AH+CH21、已知一次函数的表达式是y=(m-4)x+12-4m(m为常数,且m≠4)(1)当图像与x轴交于点(2,0)时,求m的值;(2)当图像与y轴的交点位于原点下方时,判断函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.22、如图,点在上,,,,与交于点.(1)求证:;(