预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

光电效应_光电效应ppt_光电效应课件篇一:光电效应上图即为实验装置图,入射光通过石英窗照射到金属表面(阴极)时,就有电子发射出来,当有电子到达阳极时,外电路就有电流。若光电效应应仅此而已,则并没有什么惊奇之处。事实上,从光电效应的实验中得到的部分结果,用经典的电磁理论却无法解释。光电效应课件的一些重要的演示结果如下:(1)当发生光电效应时,光照强度不变时,随着电压的增大,电路内的电流也在增大,但是不会无限增大,有一个最大值,这个最大值就是饱和电流。当光照强度再增大时,饱和电流的值也会相应的增大。(2)当外加正向电压V足够大时,从阴极发射的电子将全部到达阳极,光电流i达到饱和。课件演示发现,在入射光频率v一定时,饱和电流i与光强I成正比。(3)通常即使加上反向电压,回路中还是有电流,但当反向电压大于一临界值时,电流为零,此临界值称为截止电压-V。课件演示发现:当入射光频率v一定时,同种金属阴极材料的截止电压-V相同,与光强无关。(4)尽管对特定的金属阴极材料,截止电压-V与光强度I无关,但它与入射频率v成正比。从课件演示可以看到每一种阴极材料,都分别有确定的截止频率v0,称为观点效应的红线。入射光频率v必须大于此值,才能产生光电流,否则,不论光强多大,都无光电流。v0随着阴极材料的不同而改变。(4)解释上述问题理论基础:1905年,爱因斯坦提出了光子假设。这个假设认为,当光照到阴极表面时,所发射的一个电子是从一个单一能量量子获得能量。这种能量量子被称为光子,它的能量与电磁波的频率v有关,大小为ε=hv,h为普朗克常量。按照爱因斯坦的观点,当光入射到阴极表面时,光子被电子吸收,电子获得了hv的能量。由于电子受到阴极表面的束缚,因此电子要想发射出来,首先要克服这种引力作工,这部分工称为逸出功,用A0表示。电子所获得的hv能量,一部风被用于克服逸出功,另一部分则成为初动能:hv=(1/2)mv^2+A0。上式称为爱因斯坦光电效应方程。应用此式,光电效应就能够很好的解释。解释问题:(1)在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之增大。但是光电流不会无线增大,要受到光电子数量的约束,有一个最大的值,这个值就是饱和电流。所以,当入射光强度增大时,根据光子假设,入射光的强度(即单位时间内通过单位垂直表面积的光能)决定于单位时间里通过单位垂直面积的光子数,单位时间里通过的金属表面的光子数也就增多,于是,光子与金属中的电子碰撞的次数也增多,光电效应【实验目的】(1)了解光电效应的规律,加深对光的量子性的认识。(2)测量普朗克常量h。【实验仪器】ZKY-GD-4光电效应实验仪,其组成为:微电流放大器,光电管工作电源,光电管,滤色片,汞灯。如下图所示。【实验原理】光电效应的实验原理如图1所示。入射光照射到光电管阴极K上,产生的光电子在电场的作用下向阳极A迁移构成光电流,改变外加电压,测量出光电流I的大小,即可得出光电管的伏安特性曲线。光电效应的基本实验事实如下:(1)对应于某一频率,光电效应的I-有一电压U0,当电压。(2)当成正比。RQ关系如图2所示。从图中可见,对一定的频率,时,电流为零,这个相对于阴极的负值的阳极电压U0,被称为截止后,I迅速增加,然后趋于饱和,饱和光电流IM的大小与入射光的强度P(3)对于不同频率的光,其截止电压的值不同,如图3所示。(4)截止电压U0与频率的关系如图4所示,与成正比。当入射光频率低于某极限值生。(随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产(5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于,在开始照射后立即有光电子产生,所经过的时间至多为秒的数量级。按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为的光子具有能量E=h,h为普朗克常数。当光子照射到金属表面上时,一次被金属中的电子全部吸收,而无需积累能量的时间。电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:(1)式中,A为金属的逸出功,为光电子获得的初始动能。由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系:(2)阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加时I不再变化,光电流出现饱和,饱和光电流的大小与入射光的强度P成正比。光子的能量<A时,电子不能脱离金属