预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年宁夏银川市宁夏大学附中高二数学第一学期期末达标检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A.B.C.D.2、直线的倾斜角为()AB.C.D.3、直线与圆的位置关系是()A.相交B.相切C.相离D.相交或相切4、已知正数x,y满足,则取得最小值时()A.B.C.1D.5、下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则6、阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为,面积为6π,则椭圆C的标准方程为()A.B.C.D.7、连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,记,则下列说法正确的是()A.事件“”的概率为B.事件“t是奇数”与“”互为对立事件C.事件“”与“”互为互斥事件D.事件“且”的概率为8、已知点是点在坐标平面内的射影,则点的坐标为()A.B.C.D.9、曲线上的点到直线的最短距离是()A.B.C.D.110、若,则=()A.244B.1C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知直线(为常数)和圆,给出下列四个结论:①当变化时,直线恒过定点;②直线与圆可能无公共点;③若直线与圆有两个不同交点,,则线段的长的最小值为;④对任意实数,圆上都不存在关于直线对称的两个点.其中正确的结论是______.(写出所有正确结论的序号)12、已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____13、盒子中放有大小和质地相同的2个白球、1个黑球,从中随机摸取2个球,恰好都是白球的概率为___________.14、命题的否定是____________________.15、经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________16、在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求三、解答题(本题共5小题,每题12分,共60分)17、已知二次函数,.(1)若,求函数的最小值;(2)若,解关于x的不等式.18、如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.19、如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积20、如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.21、已知数列是等差数列,(1)求的通项公式;(2)求的最大项参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.2、答案:C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C3、答案:A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.4、答案:B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,