预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年浙江省十校联盟选考学考高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、的展开式中的系数为,则()A.B.C.D.2、青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A.B.C.D.3、已知双曲线的离心率为,则该双曲线的渐近线方程为()A.B.C.D.4、已知为等差数列,且,,则()A.B.C.D.5、若数列的前项和,则此数列是()A.等差数列B.等比数列C.等差数列或等比数列D.以上说法均不对6、设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A.B.C.24D.487、三棱锥D-ABC中,AC=BD,且异面直线AC与BD所成角为60°,E、F分别是棱DC、AB的中点,则EF和AC所成的角等于()A.30°B.30°或60°C.60°D.120°8、已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A.B.3C.6D.9、一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线10、从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为__________.12、若函数在(0,+∞)内有且只有一个零点,则a的值为_____13、设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.14、已知数列满足,若对任意恒成立,则实数的取值范围为________15、已知数列满足,,则使得成立的n的最小值为__________.16、已知直线与圆相切,则__________.三、解答题(本题共5小题,每题12分,共60分)17、已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程18、如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长19、已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于20、平面直角坐标系中,曲线与坐标轴交点都在圆上.(1)求圆的方程;(2)圆与直线交于,两点,在圆上是否存在一点,使得四边形为菱形?若存在,求出此时直线的方程;若不存在,说明理由.21、已知函数.(1)求函数的单调区间;(2)求函数在上的最大值和最小值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B2、答案:B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B3、答案:C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C4、答案:B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B5、答案:D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D6、答案:C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.7、答案:B【解析】取AD中点为G,连接GF、GE,易知△EFG为等腰三角形,且∠EGF为异面直线AC和BD所成角或其补角,据此可求∠FEG大小,从而得EF和AC所成的角的大小【详解】