预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏百校联考高二数学第二学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A.B.C.D.2、用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A.B.C.D.3、数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153B.190C.231D.2764、已知等比数列满足,,则数列前6项的和()A.510B.126C.256D.5125、数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出米,故称它们为六边形数,那么第11个六边形数为()A.153B.190C.231D.2766、概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎B.甲法郎,乙法郎C.甲法郎,乙法郎D.甲法郎,乙法郎7、已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A.B.C.D.8、已知等差数列共有项,其中奇数项之和为290,偶数项之和为261,则的值为()A.30B.29C.28D.279、抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2mB.3mC.4mD.5m10、已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A.B.C.4D.8二、填空题(本题共6小题,每题5分,共30分)11、已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.12、已知圆,若圆的过点的三条弦的长,,构成等差数列,则该数列的公差的最大值是______.13、不等式是的解集为______14、从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.15、已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.16、已知长方体中,,,则点到平面的距离为______三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.18、在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求长.19、已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.20、某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.21、已知动点在椭圆:()上,,为椭圆左、右焦点.过点作轴的垂线,垂足为,点满足,且点的轨迹是过点的圆(1)求椭圆方程;(2)过点,分别作平行直线和,设交椭圆于点,,交椭圆于点,,求四边形的面积的最大值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B2、答案:B【解析】依题意,由递推到时,不等式左边为,与时不等式的左边作差比较即可得到答案【详解】用数学归纳法证明等式的过程中,假设时不等式成立,左边,则当时,左边,∴从到时,不等式的左边增加了故选:B3、答案:B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,4