预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年宁夏银川市宁夏大学附中高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120B.84C.56D.282、某人忘了电脑屏保密码的后两位,但记得最后一位是1,3,5,7,9中的一个数字,倒数第二位是G,O,D中的一个字母,若他尝试输入密码,则一次输入就解开屏保的概率是()A.B.C.D.3、以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A.B.C.D.4、“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A.B.C.D.5、设等比数列的前项和为,若,,则()A.66B.65C.64D.636、已知命题,则为()A.B.C.D.7、如图所示的程序框图,阅读下面的程序框图,则输出的S=()A.14B.20C.30D.558、如图,在长方体中,,,则直线和夹角的余弦值为()A.B.C.D.9、设函数的图象在点处的切线为,则与坐标轴围成的三角形面积的最小值为()A.B.C.D.10、已知数列是等比数列,数列是等差数列,若,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知直线,,若,则实数______12、设椭圆,点在椭圆上,求该椭圆在P处的切线方程______.13、若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.14、已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______15、曲线在点处的切线方程为______16、函数,若,则的值等于_______三、解答题(本题共5小题,每题12分,共60分)17、在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.18、给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和19、已知椭圆的离心率为,直线与椭圆C相切于点(1)求椭圆C的方程;(2)已知直线与椭圆C交于不同的两点M,N,与直线交于点Q(P,Q,M,N均不重合),记的斜率分别为,若.证明:为定值20、已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值21、某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B2、答案:C【解析】应用分步计数法求后两位的可能组合数,即可求一次输入就解开屏保的概率.【详解】由题设,后两位可能情况有,∴一次输入就解开屏保的概率是.故选:C.3、答案:B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.4、答案:D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()