预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江省温州市永嘉县翔宇中学高二数学第一学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在的展开式中,只有第4项的二项式系数最大,则()A.5B.6C.7D.82、已知双曲线的离心率,点是抛物线上的一动点,到双曲线的上焦点的距离与到直线的距离之和的最小值为,则该双曲线的方程为A.B.C.D.3、气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A.B.C.D.4、设函数的导函数是,若,则()A.B.C.D.5、若在直线上,则直线的一个方向向量为()A.B.C.D.6、如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A.B.C.D.7、已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6B.5C.4D.28、甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差B.方差C.平均数D.中位数9、在中,角所对的边分别为,,,则外接圆的面积是()A.B.C.D.10、设为可导函数,且满足,则曲线在点处的切线的斜率是A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知直线和平面,且;①若异面,则至少有一个与相交;②若垂直,则至少有一个与垂直;对于以上命题中,所有正确的序号是___________.12、已知向量,且,则实数________________13、在空间直角坐标系中,已知向量,则在轴上的投影向量为________.14、函数,则函数在处切线的斜率为_______________.15、曲线在点处的切线方程为_______.16、我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________三、解答题(本题共5小题,每题12分,共60分)17、已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.18、数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和19、如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.20、已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值21、若存在常数,使得对任意,,均有,则称为有界集合,同时称为集合的上界.(1)设,,试判断A、B是否为有界集合,并说明理由;(2)已知常数,若函数为有界集合,求集合的上界最小值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】当n为偶数时,展开式中第项二项式系数最大,当n为奇数时,展开式中第和项二项式系数最大.【详解】因为只有一项二项式系数最大,所以n为偶数,故,得.故选:B2、答案:B【解析】先根据离心率得,再根据抛物线定义得最小值为(为抛物线焦点),解得,即得结果.【详解】因为双曲线的离心率,所以,设为抛物线焦点,则,抛物线准线方程为,因此到双曲线的上焦点的距离与到直线的距离之和等于,因为,所以,即,即双曲线的方程为,选B.【点睛】本题考查双曲线方程、离心率以及抛物线定义,考查基本分析求解能力,属中档题.3、答案:D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D4、答案:A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.5、答案:D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D6、答案:D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其