预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江省温州市永嘉县翔宇中学高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知方程表示双曲线,则实数的取值范围是()A.或B.C.D.2、某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800MB.900MC.1025MD.1250M3、椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A.B.C.D.4、椭圆的焦点为、,上顶点为,若,则()AB.C.D.5、已知函数,,当时,不等式恒成立,则实数的取值范围为()A.B.C.D.6、已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A.B.C.D.7、已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2B.3C.D.48、如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种B.48种C.72种D.96种9、双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12B.2或18C.18D.210、已知正项等比数列的前项和为,且,则的最小值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知直线与直线平行,则实数______12、平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.13、抛物线的准线方程为_______.14、已知直线l1:(1)x+y﹣2=0与l2:(1)x+ay﹣4=0平行,则a=_____.15、在空间直角坐标系中,已知向量,则的值为__________.16、某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.三、解答题(本题共5小题,每题12分,共60分)17、如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.18、已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值19、某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?20、如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积21、已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A2、答案:C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C3、答案:A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A4、答案:C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.5、答案:C【解析】由题意得出,构造函数,可知函数在区间上单调递增,可得出对任意的恒成立,利用参变量分离法可得出,利用导数求得函数在区间上的最大值,由此可求得实数的取值范围