预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江台州市书生中学高二数学第二学期期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A.B.C.D.2、某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5B.10C.8D.93、某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10B.30C.40D.464、在三棱锥中,平面;记直线与直线所成的角为,直线与平面所成的角为,二面角的平面角为,则()A.B.C.D.5、已知等差数列的前n项和为,且,则()A.2B.4C.6D.86、设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A.B.C.D.7、已知关于的不等式的解集是,则的值是()AB.5C.D.78、双曲线(,)的一条渐近线的倾斜角为,则离心率为()A.B.C.2D.49、已知是等差数列,,,则公差为()A.6B.C.D.210、为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60B.120C.150D.240二、填空题(本题共6小题,每题5分,共30分)11、已知集合,集合,则__________.12、在递增等比数列中,其前项和,若,,则_________.13、已知数列的通项公式为,,设是数列的前n项和,若对任意都成立,则实数的取值范围是__________.14、已知椭圆的左、右焦点分别为、,关于原点对称的点A、B在椭圆上,且满足,若令且,则该椭圆离心率的取值范围为___________15、设,则曲线在点处的切线的倾斜角是_______16、正四棱锥底面边长和高均为分别是其所在棱的中点,则棱台的体积为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知函数(1)当时,求的单调区间与极值;(2)若不等式在区间上恒成立,求k的取值范围18、已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.19、如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面20、已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;21、已知抛物线的准线方程为(1)求C的方程;(2)直线与C交于A,B两点,在C上是否存在点Q,使得直线QA,QB分别与y轴交于M,N两点,且?若存在,求出点Q的坐标;若不存在,说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A2、答案:B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B3、答案:C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C4、答案:A【解析】先得到三棱锥的每一个面都是直角三角形,然后可得与平面所成的角,二面角的平面角,在直角三角形中算出他们的余弦值,利用向量法计算直线与直线所成的角为的余弦值,然后比较大小.【详解】令,由平面,且平面,又,,面三棱锥的每一个面都是直角三角形.与平面所成的角,二面角的平面角,由已知可得,,,又,则所以,又均为锐角,故选:A.5、答案:B【解析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【详解】设等差数列的公差为,,,故选:B6、答案:C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C7、答案:D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D8、答案:C【解析】根据双曲线方程写出渐近线方程,得出,进而可求出双曲线的离心率.【详解】因为双曲线的渐近线方程为,又其中一条渐近线的倾斜角为,所以,