预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江台州市书生中学高二数学第一学期期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A.B.C.D.2、“”是“函数在上有极值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则4、函数在处有极值为,则的值为()A.B.C.D.5、已知直线与直线平行,则实数a的值为()A.1B.C.1或D.6、某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A.B.C.D.7、展开式中第3项的二项式系数为()A.6B.C.24D.8、已知命题,,则p的否定是()A.B.C.D.9、下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为10、在三棱锥中,,D为上的点,且,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______12、已知为等比数列的前n项和,若,,则_____________.13、已知数列的前n项和为,且满足通项公式,则________14、设圆,圆,则圆有公切线___________条.15、定义在上的函数满足,且对任意都有,则不等式的解集为__________.16、关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____三、解答题(本题共5小题,每题12分,共60分)17、如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由18、如图所示,在空间四边形中,,分别为,的中点,,分别在,上,且.求证:(1)、、、四点共面;(2)与的交点在直线上19、如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值20、如图,四棱锥的底面为正方形,底面,设平面与平面的交线为.(1)证明:;(2)已知,为直线上的点,求与平面所成角的正弦值的最大值.21、已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题2、答案:B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B3、答案:C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C4、答案:B【解析】根据函数在处有极值为,由,求解.【详解】因为函数,所以,所以,,解得a=6,b=9,=-3,故选:B5、答案:A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A6、答案:D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没