预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年上海市宜川中学高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知,,,若,,共面,则λ等于()A.B.3C.D.92、函数在点处的切线方程的斜率是()A.B.C.D.3、直线在y轴上的截距为()A.-1B.1C.D.4、已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1B.2C.-1D.-25、已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245B.0.05786C.0.02865D.0.037456、已知数列满足,若.则的值是()A.B.C.D.7、已知数列中,,当时,,设,则数列的通项公式为()A.B.C.D.8、如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A.B.C.D.9、设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A.B.C.D.10、已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6B.5C.4D.2二、填空题(本题共6小题,每题5分,共30分)11、如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________12、已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积13、已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______14、若直线过圆的圆心,则实数a的值为_________.15、已知命题:,总有.则为______16、已知抛物线的焦点为,过焦点的直线交抛物线与两点,且,则拋物线的准线方程为________.三、解答题(本题共5小题,每题12分,共60分)17、如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.18、已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程19、已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.20、在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.21、从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C2、答案:D【解析】求解导函数,再由导数的几何意义得切线的斜率.【详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D3、答案:A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A4、答案:D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D5、答案:D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D6、答案:D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D7、答案:A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A8、答案:B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.9、答案:D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线