预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高三数学必修二知识点总结_知识点大全【#高三#导语】奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。高三频道给大家整理的《高三数学必修二知识点总结》供大家参考,欢迎阅读!1.高三数学必修二知识点总结一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的'篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{xx-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={xx2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ2.高三数学必修二知识点总结解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。数列(1)数列的概念和简单表示法。①了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。②了解数列是自变量为正整数的一类函数。(2)等差数列、等比数列。①理解等差数列、等比数列的概念。②掌握等差数列、等比数列的通项公式与前项和公式。③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。④了解等差数列与一次函数、等比数列与指数函数的关系。不等关系一元二次不等式①会从实际情境中抽象出一元二次不等式模型。②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组。②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。基本不等式:①了解基本不等式的证明过程。②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点。3.高三数学必修二知识点总结空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的