预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共72页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《等差数列》说课稿作为一名专为他人授业解惑的人民教师,时常要开展说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么什么样的说课稿才是好的呢?以下是小编收集整理的《等差数列》说课稿,仅供参考,欢迎大家阅读。《等差数列》说课稿1各位领导、各位专家:你们好!我说课的课题是《等差数列》。我将从以下五个方面来分析本课题:一、教材分析1、教材的地位和作用:《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。同时等差数列也为今后学习等比数列提供了学习对比的依据。另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。2、教学目标:a、在知识上,要求学生理解并掌握等差数列的概念,了解等差数列通项公式的推导及思想,初步引入“数学建模”的思想方法并能简单运用。b、在能力上,注重培养学生观察、分析、归纳、推理的能力;在领会了函数与数列关系的前提下,把研究函数的方法迁移到研究数列上来,培养学生的知识、方法迁移能力,提高学生分析和解决问题的能力。c、在情感上,通过对等差数列的研究,让学生体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。3、教学重、难点:重点:①等差数列的概念。②等差数列通项公式的推导过程及应用。难点:①等差数列的通项公式的推导。②用数学思想解决实际问题。二、学情分析对于高二的学生,知识经验已经比较丰富,他们的智力发展已经到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。三、教法、学法分析教法:本节课我采用启发式、讨论式以及讲练结合的教学方法,通过提问题激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析并解决问题。学法:在引导学生分析问题时,留出学生思考的余地,让学生去联想、探索,鼓励学生大胆质疑,围绕等差数列这个中心各抒己见,把需要解决的问题弄清楚。四、教学过程我把本节课的教学过程分为六个环节:(一)创设情境,提出问题问题情境(通过多媒体给出现实生活中的四个特殊的数列)1、我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,10,15,20,①2、2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目共设置了7个级别,其中较轻的4个级别体重组成数列(单位:Kg):48,53,58,63②3、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5,最低降至5那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15、5,13,10、5,8,5、5③4、按照我国现行储蓄制度(单利),某人按活期存入10000元钱,5年内各年末的本利和(单位:元)组成了数列:10072,10144,10216,10288,10360④教师活动:引导学生观察以上数列,提出问题:问题1、请说出这四个数列的后面一项是多少?问题2、说出这四个数列有什么共同特点?(二)新课探究学生活动:对于问题1,学生容易给出答案。而问题2对学生来说较为抽象,不易回答准确。教师活动:为引导学生得出等差数列的概念,我对学生的表述进行归类,引导学生得出关键词“从第2项起”、“每一项与前一项的差”、“同一个常数”告诉他们把满足这些条件的数列叫做等差数列,之后由他们集体给出等差数列的概念以及其数学表达式。同时为了配合概念的理解,用多媒体给出三个数列,由学生进行判断:判断下面的数列是否为等差数列,是等差数列的找出公差1、1,2,3,4,5,6,;(√,d=1)2、0、9,0、7,0、5,0、3,0、1;(√,d=—0、2)3、0,0,0,0,0,0,、;(√,d=0)其中第一个数列公差>0,第二个数列公差由此强调:公差可以是正数、负数,也可以是0在理解等差数列概念的基础上提出:问题3、如果等差数列的首项是a1,公差是d,如何用首项和公差将an表示出来?教师活动:为引导学生得出通项公式,我采用讨论式的教学方法。让学生自由分组讨论,在学生讨论时引导他们得出a10=a1+9d,a40=a1+39d,进而猜想an=a1+(n—1)d。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。此时指出:这就是不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,进而提出:问题4、怎么样严谨的求出等差数列的通项公式?利用等差数列概念启发学生写出n—1个等式。对照已归纳出的通项公式启发学生想出将n—1个等式相加,最后证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐