预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

如何提高自己的创新能力[高中数学教学中如何培养学生的创新能力]教育创新是素质教育的突破口,课堂教学是实施创新教育的主阵地,培养学生的创新意识和创新能力已成为当代教育的重要目的之一。因此,数学课堂教学中,如何保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,充分培养和提高学生的自主性、能动性和创造性,让学生在参与中学会学习、学会合作、学会创新。下面结合自己的课堂教学,谈谈粗浅认识。一、落实主体地位,培养学生的创新意识“以学生为主体,教师为主导”是一条重要的教学原则,在实际教学中,教师“满堂灌”,学生被动地接受数学知识仍是当今数学教学的主要模式,导致学生不会学、学不会,产生厌学情绪。改变这一现状的关键在于充分发挥学生的主观能动性,转变学生始终处于接受知识的被动地位,使之成为学习的主人。1.创设和谐的情感氛围。数学课堂教学过程不仅是在特定情景下学生学得知识、形成能力,而且也是师生情感交流、认知因素与情感因素相互作用的情感过程。课堂上师生积极的情感交流,可以引发学生的学习热情,促使学生创新意识的形成。要形成和谐的情感氛围,教师必须做到:第一,对数学教学倾注满腔热情,去唤起学生对数学学科的热爱。第二,要善于利用数学的内在魅力和艺术化的手段,激发学生的学习兴趣和勇于探索数学知识的激情。第三,要尊重学生的人格,多以积极的褒奖和鼓励,要注意给差生以“偏爱”。这样才能形成师生和谐的情感氛围,达到“亲其师,信其道”的目的。2.优化课堂结构。采用灵活多样的教学方法,如:发现式教学法、讨论式教学法、疑问式教学法、分层教学法及暗示法等,充分调动学生学习的主动性、自觉性,培养学生分析问题和解决问题的能力,从而有所创新。同时,积极地利用现代化的教学手段,尤其是电脑多媒体在教学中的运用,通过声音、图片等多种表现形式,使学生对定义、定理、公式等数学知识掌握得更加透彻,更加牢固,有利于激发学生的学习兴趣和创新激情。比如,关于抛物线的定义,教材上是这样叙述的:“平面内与一定点F和一定直线L的距离相等的点的轨迹是抛物线。”教学中教师可引导学生思考:点与直线的位置关系有无特殊要求,教师可给出如下一道题目让学生思考:动点F(-3,1)和定直线L:2x+y+5=0的距离相等,则点F的轨迹是()(A)抛物线(B)双曲线(C)椭圆(D)直线。学生自己通过推演,不难发现,当点F在直线L上时,其轨迹是过点F且与L垂直的一条直线,而非抛物线。由此教师可引导学生对抛物线的定义作出严格的表达。有时学生的意见可能是错误的,教师也应该给予肯定,表扬其探索精神,教师要不断地对学生进行激励性评价,以使学生的创新能力不断增值。因为有的时候错误往往可能是成功的先兆,错误中可能隐含着新的方法。3.通过一题多解、一题多变、逆向思维等提供给学生更多的参与机会,通过暴露数学问题的提出过程,让学生展开发散性思维,不断灌输“大胆假设,小心论证”的科学认识观。对一些不太复杂的课题,可通过学生自学、师生换位、让学生走上讲台当一回老师,这样一些成功尝试,增加了学生的责任感和自学能力。4.积极创造条件,让学生参与实践活动。只注重课堂教学,而不注重实践,不利于学生掌握知识和提高能力,让学生带着知识、能力走向实践活动,可以扩大学生的知识面,使抽象的理论具体化。如在几何教学中,老师可以和学生一起自制立体模型教具,让学生认清图形结构,理解图形内在联系。在学了面与面平行后,让学生用刻度尺检查长方形工件的相对两个面是否平行、方法有哪些。长期坚持理论与实践相结合,为学生的创新思维奠定了基础。二、注重学生参与,培养学生的创新思维教学过程就是在教师的引导下,以学生为主体,由浅入深地让学生主动参与,获取知识的思维过程。中学数学教育的显著特点是:不仅要让学生“学会”而且还要让学生“会学”。要会学最根本的途径就是让学生主动参与教学活动,了解数学知识的发生、发展以及知识体系的形成过程,数学思维方法的提炼过程。让学生体会“数学家”的思维过程,从而激励学生的创新思维。教育心理学家认为,人的心理是在实践活动中发展的,学生的心理应主要在学习活动中得到发展,尤其是作为智力和认知核心的思维,对青少年学生来说,希望自己成为探险者、发明者、创造者,这是正常的心理需要,也是参与学习的动力源泉。在课堂教学中,学生积极参与教学活动的全过程,能使学生心理处于亢奋壮态,使动力系统“开足马力”,能调动一切因素,进行积极的思维和操作。当学生依靠自己的力量在获得学习上的成功时,不但对数学问题有了深刻的理解,而且还能通过愉快的心理体验,实现兴趣的自我培养,增进学生的创新思维的形成。笔者给高一的学生出了这样一个题目,一个平面将空间分成两个部分,两个平面、三个平面将空间最多可以分成几个部分,最少分成几个部分?学生马上开始讨论,比、画、发言相当积极,课