预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。1设计方案论证1.1电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。1.2转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。2双闭环调速控制系统电路设计及其原理2.1综述随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了她的这一缺陷。双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以及抗电网电压扰动之上。正由于双闭环调速的众多优点,因此在此有必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是旨在对双闭环进行最优化的设计。2.2整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改进电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。三相桥式全控整流电路的工作原理是当a=0°时的工作情况。触发电路先后向各自所控制的6只晶闸管的门极(对应自然换相点)送出触发脉冲,即在三相电源电压正半波的1、3、5点(正半波自然换相点)向共阴极组晶闸管VT1、VT3、VT5输出触发脉冲;在三相电源电压负半波的2、4、6点(负半波自然换相点)向共阳极组晶闸管VT2、VT4、VT6输出触发脉冲。以下三点是三相桥式全控整流电路所要遵循的规律:(1)三相桥式全控整流电路任一时刻必须有两只晶闸管同时导通,才能形成负载电流,其中一只在共阳极组,另一只在共阴极组。(2)整流输出电压波形是由电源线电压uUV、uUW、uVW、uVU、uWU和uWV的轮流输出所组成的,各线电压正半波交点1~6分别是VT1~VT6的自然换相点。(3)六只晶闸管中每管导通120°,每间隔60°有一只晶闸管换流。综上所述,三相桥式全控整流电路的整流输出电压脉动小,脉动频率高,基波频率为300Hz,因此串入的平波电抗器电感量较小。在负载要求相同的直流电压下,晶闸管承受的最大电压,将比采用三相半波可控整流电路要减小一半,且无需要中线,谐波电流也小。因此,广泛应用于大功率直流电动机调速系统。如果为了省去整流电压器,能够选用额定电压为440V的直流电动机。相比其它各类整流电路而言,再根据其优点,因此采用三相桥式全控整流电路。本次本次课程设计的变压器联结组别采用的是主变压器为Yd11和同步变压器为Yy4。当然不同的联结组别的选择会产生不同的效果和作用。以下为变压器联结组别选择的国家标准:为了制造和使用上的方便,国家规定三相双绕组电力变压器的标准联结组为Yyn0、YNy0、Yy0、Yd11、YNd11。其中Yyn0用于低压侧电压为400~230V的配电变压器中,供给动力与照明混合负载。变压器的容量可达1800kV.A,高压侧的额定电压不超过35kV。YNy0用于高压侧需接地的场合。Yy0只供三相动力负载。Yd11用在低压侧电压超过400V的线路中,最大容量为31500kV.A,高压侧电压在35kV以下。YNd11用在高压侧需要接地且低压侧电压超过400V的线路中。三相变压器的绕组联结时应注意利用单相变压器接成三相变压器组时,要注意绕组的极性。把三相心式变压器的一、二次侧三相绕组接成星形或三角形时,其首端都应为同名端;一、二次绕组相序要一致。2.3触发电路的选择和同步晶闸管的电流容量越大,要求的触发功率越大。对于大中电流容量的晶闸管,为了保证其触发脉冲具有足够的功率,往往采用由晶体管组成的触发电路。本次课程设计的触发电路采用的是锯齿波同步的触发电路,该电路由五个部分组成,分别为同步环节;锯齿波形成及脉冲移相环节;脉冲形成、放大和输出环节;双脉冲形成环节;强触发环节。