预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

导数与函数的单调性的教学反思导数与函数的单调性的教学反思作为一位到岗不久的教师,课堂教学是重要的工作之一,借助教学反思我们可以学习到很多讲课技巧,我们该怎么去写教学反思呢?以下是小编为大家整理的导数与函数的单调性的教学反思,仅供参考,大家一起来看看吧。导数与函数的单调性的教学反思11、本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。2、本节课存在的不足之处是:①教学引入时间较长,致使整堂课时间安排显得前松后紧。②在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;应该去掉1-2个函数(一次函数只需选一个)。③教态不够自然、大方;显得过于紧张。④由于前松后紧,课堂小结不够到位。3、①本节课教学设计安排比较紧凑,加之学生基础较好,是能够完成教学任务的,而且效果显著;但在实施过程中,由于学生对函数的'增减性概念不熟透,致使引入时间较长,课堂教学的结尾显得太匆忙。②由于听课教师太多,讲课时太紧张,课堂表达显得不自然,语言不够精炼。4、改进的思路:①选取函数时去掉两个一次函数。②在引导学生提问时,问题要简明扼要。③多进行公开课,锻炼自己的胆量和语言表达能力。导数与函数的单调性的教学反思2一、本节课的成功之处:1.注重教学设计本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。2.注重探究方法和数学思想的渗透教学过程中教师指导启发学生以循序渐进的模式由简到难,再从理论上探究验证,这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知。同时也渗透了归纳推理的数学思想方法。培养了学生的探索精神,积累了探究经验。3.突出学生主体地位,教师做好组织者和引导者教师在整个教学过程一直保持着组织者与引导者的身份,通过抛出的若干问题,促使学生主动探索、积极思维。充分发挥学生的主动性,让学生在动脑、动口、动手的活动中掌握知识和方法,提炼规律。并体验发现规律的喜悦感,激发热爱数学的.积极情绪。4.现代信息技术的合理使用多媒体的使用,第一,在教学上节省了时间,让学生有更多时间去探究。第二,利用几何画板的优势,使原本不能画出的图像都通过几何画板画出,直观的验证了函数的导数的正负与单调性的关系。帮助学生发现规律。使探究落到实处。二、本节课存在的不足之处是:(1)课件中有些漏掉的部分。(2)作业部分未展示。(3)复习导数概念时,由于学生说不清楚,教师没及时中断,导致引入时间有点长。三、改进思路:(1)加强学习现代信息技术,提高制作多媒体技术的水平。(2)在设计教学时,在考虑全面一些,是教学过程更符合学生实际水平。导数与函数的单调性的教学反思3本次学校在数学组内开展了“行知杯”赛课活动,我抽到的题目“利用导数研究函数的单调性”。由于我近期需要准备市公开课,两组公开课同时进行确实让我感受到力不从心,我也深深的感觉自己需要改进的地方还有很多。作为刚刚接手高二的新教师,这节课我是在借鉴了他人的教学过程的基础上加入了自己的想法后形成的教学设计。对于本节课的教学反思如下:第一,教学整体设计导数这个概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一.单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性.那为什么还要用导数研究函数的单调性?能不能用导数研究函数的单调性?怎样用导数研究函数的单调性?循着这样的思路,整个教学过程,从创设情境—实例验证—揭示本质—强化应用—回顾反思,五个方面入手,层层递进,螺旋上升.情境引入本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以在引入阶段,利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,第一次抽象:引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与曲线上升下降的联系;适当建系后,第二次抽象:将曲线看做是函数y=f(x)上的一段图象,那么切线斜率即为函数在该点处的导数,顺势猜想结论,感知导数正负与函数单调性之间的联系,从而轻松高效引入课题,成功激发学生的求知欲.合作探究前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证