预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

非淡泊无以明志,非宁静无以致远。——诸葛亮北京市延庆县2013届高三一模统考数学(文科)2013年3月本试卷,满分120分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本卷共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M{x|x1},N{x|2x1},则MN=A.B.{x|x0}C.{x|x1}D.{x|0x1}2.命题“xR,exx”的否定是A.xR,exxB.xR,exxC.xR,exxD.xR,exx3.已知等差数列,等比数列,则该等差数列的公差为1,a,b3,a2,b5A.3或3B.3或1C.3D.3logx,x014.已知函数f(x)4,则f[f()]3x,x01611A.9B.C.9D.995.已知圆的方程为x2y26x8y0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为A.106B.206C.306D.4066.已知直线l:ax(a1)y10,l:xay20,则“a2”是“ll”1212A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.一四面体的三视图如图所示,则该四面体四个面中最大的面积是(7题图)A.2B.22C.3D.238.已知函数f(x)x2(ab)xab2(ab)的两个零点为,(),则实数a,b,,的大小关系是A.abB.abC.abD.ab万两黄金容易得,知心一个也难求。——《曹雪芹》谋事在人,成事在天!——《增广贤文》第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9.已知|a|1,|b|2,向量a与b的夹角为60,则|ab|.10.若复数z(m2m2)(m1)i(为虚数单位)为纯虚数,其中mR,则m.11.执行如图的程序框图,如果输入p6,则输出的S.12.在ABC中,a,b,c依次是角A,B,C的对边,且bc.若a2,c23,A,则角C.6xy113.设x,y满足约束条件x2y2,若zx24y2,则z的取值范围是.3x2y314.已知定义在正整数集上的函数f(n)满足以下条件:(1)f(mn)f(m)f(n)mn,其中m,n为正整数;(2)f(3)6.则f(2013).三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知f(x)3sin2x2sin2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)若x[0,],求f(x)的最小值及取得最小值时对应的x的取值.616.(本小题满分14分)如图,四棱锥PABCD的底面ABCD为菱形,ABC60,PA底面ABCD,PAAB2,E为PA的中点.P(Ⅰ)求证:PC//平面EBD;(Ⅱ)求三棱锥CPAD的体积V;ECPADMA(Ⅲ)在侧棱PC上是否存在一点M,满足PC平面MBD,D若存在,求PM的长;若不存在,说明理由.BC17.(本小题满分13分)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题统计结果如图先天下之忧而忧,后天下之乐而乐。——范仲淹志不强者智不达,言不信者行不果。——墨翟表所示.(Ⅰ)分别求出a,b,x,y的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.18.(本小题满分13分)1已知函数f(x)2a2lnxx2ax(aR).2(Ⅰ)当a1时,求曲线yf(x)在点(1,f(1))的切线方程;(Ⅱ)讨论函数f(x)的单调性.19.(本小题满分14分)1在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F,F在x轴上,离心率为.过F的直线交椭1221圆C于A,B两点,且ABF的周长为8.过定点M(0,3)的直线l与椭圆C交于G,H两点(点G在点M,H21之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l的斜率k0,在x轴上是否存在点P(m,0),使得以PG、PH为邻边的平行四边形为1菱形.如果存在,求出m的取值范围;如果不存在,请说明理由.20.(本小题满分13分)A是由定义在[2,4]上且满足如下条件的函数(x)组成的集合:(1)对任意x[1,2],都有(2x)(1,2);(2)存在常数L(0L1),使得对任意的x,x