预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实验三:用FFT对信号作频谱分析实验报告实验目的与要求学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。实验原理用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N小于等于D。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。实验步骤及内容(含结果分析)(1)对以下序列进行FFT分析:x1(n)=R4(n)n+10≤n≤38-n4≤n≤70其它nx2(n)=4-n0≤n≤3n-34≤n≤70其它nx3(n)=选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。【实验结果如下】:实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析:x4(n)=cos[(π/4)*n]x5(n)=cos[(π/4)*n]+cos[(π/8)*n]选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。【实验结果如下】:(3)对模拟周期信号进行频谱分析:x6(n)=cos(8πt)+cos(16πt)+cos(20πt)选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。【实验结果如下】:【附录】(实验中代码)x1n=[ones(1,4)];%产生R4(n)序列向量X1k8=fft(x1n,8);%计算x1n的8点DFTX1k16=fft(x1n,16);%计算x1n的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1);figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.');%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.');%绘制8点DFT的幅频特性图title('(1a)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%x2n和x3nM=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');%绘制8点DFT的幅频特性图title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(f,abs(X3k8),'.');%绘制8点DFT的幅频特性图title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');%绘制8点DFT的幅频特性图title('(2a)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(f,abs(X3k16),'.');%绘制8点DFT的幅频特性图title('(3a)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');%x4n和x5nN=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'.');%绘制8点DFT的幅频特性图title('(4a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(f