预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

离散数学课程总结离散数学课程总结范文总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,是时候写一份总结了。总结怎么写才不会流于形式呢?下面是小编整理的离散数学课程总结范文,仅供参考,欢迎大家阅读。离散数学课程总结篇1一、对该课程的理解:离散数学是现代数学的一个重要分支,是计算机科学专业的专业主干课之一,课程结合计算科学的特点研究离散对象和相互关系,对提高学生的抽象思维与逻辑推理能力有很重要的作用。它以研究离散量的结构和相互关系为主要目标,在计算机科学的数据结构、操作系统等有广泛的应用。它是许多数学科目的统称。它的内容包括了数理逻辑、集合论、抽象代数、图论、排列组合、形式语言及自动机等。该门课概念较多、论性较强,定理比较多,学习起来难免有点枯燥乏味。同时也因为概念比较多所以课程连接比较混乱,概念不清,张冠李戴等问题屡屡出现。第一章主要是介绍命题逻辑的基本概念。其中包括命题与联结词;命题公式及其赋值。这张可以说是基础中的基础,为后面打下基础。通过各种联结词将命题连接起来构成推理,从而可以判断其真假。第二章主要是介绍命题逻辑等值演算。其中包括等值式;析取范式与合取范式;联结词的完备集;可满足性问题与消解集。学习完了第一章的命题逻辑之后,就开始在此基础上扩充知识点。在这章中重点有运用等值演算法或者真值表法去求解析取范式和合取范式(或者主析取范式和主合取范式)以及等值式。26个等值式中我们要特别需要记住的有分配律,德摩根律,蕴涵等值式,等价等值式,这些等值式贯穿于后面几章的'知识。其后就是求主析取范式和主合取范式了第三章主要是介绍命题逻辑的推理理论。其中包括推理的形式结构和自然推理系统P。这张将又会介绍更多的等值式。当然,学以致用在本章得以诠释,同时这也是考试的一个重点。第四章的知识点逐渐深入,由浅及深,主要是介绍一阶逻辑基本概念。也就是一阶逻辑命题符号化,一阶逻辑公式及其解释。第五章与第四章息息相关,主要是介绍一阶逻辑等值演算与推理。包括一阶逻辑等值式与置换规则,前束范式,推理理论。运用等值式及各种规则求一阶逻辑的翻译或者符号化。第六章主要是介绍集合代数。包括有集合的基本概念,集合的运算,集合恒等式。这章主要是围绕集合而展开学习的,内容简单易懂。第七章主要是介绍二元关系。其中包括有序对与笛卡尔积,二元关系,关系的运算,关系的性质,关系的闭包,等价关系与划分,偏序关系。这章内容比较重要,特别是后面的五种关系及闭包。了解了有序对知识点后,在此基础上继续学习五种关系:自反性,反自反性,对称性,反对称性,传递性,并且熟悉他们的证明过程。关系的闭包,等价关系,偏序关系是考试的另一个重点,需重点掌握。第八章主要是介绍函数。包括函数的定义和性质的掌握以及复合函数,反函数。第九章和第十章主要是介绍代数系统及群与环。可以这样总结:二元运算及其性质——代数系统——半群——独异点——群。与此同时,我们也要掌握群,半群的相关证明。第十四章和第十五章主要是介绍图的基本概念以及欧拉图,哈密顿图。在第十四章中,我们初步学习图的相关知识,同时还有图的矩阵表示和运算。这也是一重点。至于欧拉图及哈密顿图,我们要学习如何判断是否为欧拉图及哈密顿图,要求不是很多,了解就好。二、对课程的意见和建议:可以适当的多添加几节离散数学课,老师也可以在课堂上适当的添加一些在其他计算机学科中应用的知识点。对离散数学中的一些富有历史趣味的有关离散的历史故事也可以提一提,增加课堂气氛,减少课堂的乏味。三、对老师德意见和建议:就我们的离散老师而言是非常的一个老师,她在课堂上总是充满热情,时不时的穿插一些笑话缓和课堂气氛。而且每次上课她都是面带微笑,让人产生一种亲切感,我认为对这样的老师实在是没有什么意见和建议了,如果说有,那就是希望她以后可以多开一些习题课来巩固我们学习过的知识。离散数学课程总结篇2离散数学是描绘一些离散量与量之间的相互逻辑结构及关系的学科。它的思想方法及内容渗透到计算机学科的各个领域中。因此它成为计算机及相关专业的一门重要专业基础课。主要内容包括:集合论、关系、代数系统、图论和数理逻辑五个部分。结构上,从集合论入手,后介绍数理逻辑,便于学生学习。为了能很好的消化理解内容,列举了大量的较为典型、易于接受、说明问题的例题,配备了相当数量的习题,也列举了部分实际应用问题。一、知识点第一章、集合论集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含集合、元素和成员关系等最基本数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。本章主要介绍集合的基本概念、运算及幂集合和笛卡尔乘积。这章是本书的基础部分,要学好离散数学