预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学知识点总结整理数学知识点总结整理总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它能够使头脑更加清醒,目标更加明确,因此好好准备一份总结吧。那么总结要注意有什么内容呢?下面是小编收集整理的数学知识点总结整理,希望对大家有所帮助。数学知识点总结整理11、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。4、二次函数的零点:二次函数。1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。数学知识点总结整理21、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠。4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式。单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)单项数的次数:是指单项式中所有字母的指数的和。(注意指数1)5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式。特别注意多项式的项包括它前面的性质符号。它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。数学知识点总结整理3(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。(2)一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程。②通过函数图象了解一元二次不等式与相应函数、方程的联系。③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。(3)二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组。②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。(4)基本不等式:①探索并了解基本不等式的证明过程。②会用基本不等式解决简单的(小)值问题。数学知识点总结整理4(一)本单元知识网络:1、生活中的数(1)认、读、数、写10以内的数。(2)掌握10以内数的顺序和大小,初步体会基数与序数的含义。(二)各课知识点:1、可爱的校园(数数)知识点:(1)通过观察情境图,初步认识10以内的数。(2)在数数的活动中,体会有序数数的方法。2、快乐的家园(10以内数的认识)知识点:(1)初步认识1~10各数的符号表示方法。(2)在具体情境活动中,学习运用数字符号表示日常生活中的一些物体的量。3、玩具(1~5的认识与书写)知识点:能正确数出5以内物体的个数,能用数表示日常生活的一些事物,会正确书写1~5的数字。4、小猫钓鱼(0的认识)知识点:(1)知道在生活中“0”所表示的几种常见的意义,知道“0”和1,2,3,…一样也是一个数,“0”比1,2,3,…小。(2)会正确书写“0”5、文具(6~10的认识与书写)知识点:(1)能够正确地数出数量是6~10的物体个数。(2)学会6~10各数的读写方法。数学知识点总结整理5函数①位置的确定与平面直角坐标系位置的确定坐标变换平面直角坐标系内点的特征平面直角坐标系内点坐标的符号与点的象限位置对称问题:P(x,y)→Q(x,-y)关于x轴对称P(x,y)→Q(-x,y)关于y轴对称P(x,y)→Q(-x,-y)关于原点对称变量、自变量、因变量、函数的定义函数自变量、因变量的取值范围(使式子有意义的条件、图象法)56、函数的图象:变量的变化趋势描述②一次函数与正比