一种基于自适应梯度稀疏模型的模糊图像非盲去模糊方法.pdf
是湛****21
亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于自适应梯度稀疏模型的模糊图像非盲去模糊方法.pdf
本发明公开了一种基于自适应梯度稀疏模型的模糊图像非盲去模糊方法,其对一幅图像的梯度分布估计中并未采用一个固定的形状参数值和尺度参数值,而是针对不同的像素点采用不同的形状参数值和尺度参数值,使得本方法能够很好的适应图像纹理变化,从而使得利用本发明方法复原的复原图像具有较高的信噪比值,同时在主观质量上,复原图像的平滑区域没有噪声点而显得自然顺滑,复原图像的纹理区域更加清晰,获得了更佳的主观视觉质量;其将图像划分成平滑区域和纹理区域,对于属于平滑区域内的像素点直接采用固定的形状参数和尺度参数,而对于属于纹理区域
基于稀疏性度量的图像盲去模糊方法.pdf
本发明公开了一种基于稀疏性度量的图像盲去模糊的方法,主要解决现有技术在图像盲去模糊时,对噪声敏感且存在严重的振铃效应的问题。其实现过程为:(1)用现有的方法,获得两种不同的模糊核kf和ks;(2)线性组合这两种不同的模糊核得到一个模糊字典kd={k1,k2....k10};(3)在模糊图像上选取一个有明显边缘的图像块P,用模糊字典kd对图像块P用Lucy-Richardson方法进行预处理,得到预处理的图像块C1,C2,C3...C10;(4)对预处理的图像块C1,C2,C3...C10进行稀疏性测量得到
噪声自适应非盲图像去模糊.pdf
对包括模糊和噪声的输入图像执行噪声自适应非盲去模糊的系统和方法包括对输入图像实施第一神经网络以获得一个或多个参数,并执行正则化去卷积以从输入图像获得去模糊图像。正则化去卷积使用一个或多个参数来控制去模糊图像中的噪声。一种方法包括实施第二神经网络以从去模糊图像中去除伪影并提供输出图像。
基于图像块先验与稀疏范数的盲去模糊方法.pdf
本发明提出一种基于图像块先验与稀疏范数的盲去模糊方法,主要是解决现有技术对图像去模糊质量差的问题,其方案是:输入模糊图像;初始化模糊核、二进制掩模,候选图像;调用金字塔模型,将候选图像根据金字塔层数下采样,对候选图像与模糊核上采样;更新二进制掩模、更新图像块方差、更新图像样例块;固定参数更新模糊核、候选图像,直到金字塔最后一层;设置迭代次数,固定模糊核以及候选图像的范数保持不变,对模糊核添加的l
基于边缘感知的图像盲去模糊组合稀疏优化方法.pdf
本发明公开了一种基于边缘感知的图像盲去模糊组合稀疏优化方法,在图像L0稀疏先验的基础上引入相对总变分正则项,对自然图像进行盲去模糊,按照如下步骤进行:输入模糊图像y,其模糊核为k,待求解的清晰图像为x;初始化待求解的图像x为模糊图像y,初始化参数λ,σ等参数;利用模糊核和图像交叉估计的方法由粗到细求解模糊核k;根据步骤3)最后计算出来的模糊核k对模糊图像y进行非盲去模糊,求出清晰的图像x