一种面向压缩感知的稀疏多带信号盲重构方法.pdf
努力****亚捷
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种面向压缩感知的稀疏多带信号盲重构方法.pdf
本发明公开了一种面向压缩感知的稀疏多带信号盲重构方法。步骤1、将多带信号重构问题转化为线性规划问题;步骤2、步骤1的线性公式设定输入值;步骤3、输入采样得到的稀疏多带信号,对稀疏多带信号进行l次迭代操作;步骤4、计算SPG投影的估计值;步骤5、更新对应的残差的估计值:步骤6、更新迭代;步骤7、完成稀疏多带信号的重构。本发明解决现有方法在实际应用中由于无法获得当前有效频带数而导致无法进行稀疏多带信号重构的问题。
面向压缩感知的稀疏信号重构算法研究的任务书.docx
面向压缩感知的稀疏信号重构算法研究的任务书任务书一、任务背景随着科技的发展和普及,现今社会的信息量面临爆炸式增长,使得信息采集、传输和存储等问题愈发凸显,信息编码与压缩成为解决这些问题的有效手段之一。然而,传统的压缩方法多数是通过削减信号的冗余信息来达到降低空间和时间占用的目的,如JPEG、MPEG等图像和视频压缩方法;而稀疏信号压缩的方法则是同时考虑信号的有用信息和冗余信息和去掉其余的部分,从而使信号可以更加紧凑,更易于存储和传输。稀疏表示技术是一种常见的信号处理方法,可用于信号的压缩感知、信号恢复和信
压缩感知盲稀疏信号贪婪迭代重构算法研究的任务书.docx
压缩感知盲稀疏信号贪婪迭代重构算法研究的任务书任务书一、课题背景在现代通信、图像处理、卫星通信以及生物信息学等领域,数据的采集非常频繁。而且大多数情况下,这些数据都是高维稀疏的。为了提高数据采集的速度和准确性,压缩感知(CS)技术被广泛应用。压缩感知技术使得只需要采集相对较少的测量数据即可重构原数据,从而缩短了数据采集的时间和降低了成本。在信号恢复领域,盲稀疏的压缩感知算法(BCS)已成为了热门研究领域之一。在当前的盲恢复过程中,贪婪迭代算法在信号重构方面表现优异。贪婪迭代算法(Greedyalgorit
基于压缩感知的自适应确定稀疏度的信号重构方法.pdf
本发明公开了一种基于压缩感知的自适应确定稀疏度的信号重构方法,包括步骤:输入原始稀疏信号,构造观测矩阵,得到观测向量,寻找观测矩阵与观测向量内积及相关系数降序排列后的拐点,并拐点作为初始步长进行多次迭代稀疏度逐渐逼近,更新索引集,通过加权函数控制步长变化实现“大步长快速接近,小步长精确逼近”,利用索引集中原子逼近原始信号;最后,判断迭代停止条件,跳出循环,实现信号重构。其显著效果是:避免了现有SAMP算法凭经验估计步长而盲目地逐个尝试的主观性;保证了信号重构的精度,提高了重构速度。
一种基于单比特量化的压缩感知信号盲重构方法.pdf
一种基于单比特量化的压缩感知信号盲重构方法,它用于压缩感知信号的重构技术领域。本发明解决了目前的单比特压缩感知必须经过大量计算,才能从仅保留符号位的测量信号中重构出源信号的问题。本发明对输入信号的符号测量值y进行量化,然后利用这些符号数据进行最优支撑集估计,并在最优支撑集上进行一致重建,以便获得更新输入信号的估计值,将前后两次迭代的信号幅度估计值的差值和精度阈值进行对比,来确定迭代是否终止;为防止迭代陷入死循环,设定迭代到最大迭代次数时也停止迭代;根据末次迭代结果确定稀疏度和信号幅度的估计值,实现信号盲重