预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二理科4月11日数学周练考试时间:80min总分:100分出题人:温黎一.单选题(10x5=50分)1.某次国际合作论坛,为了保护各国国家元首的安全,某部门将5个安保小组全部安排到指定的三个区域内工作,且每个区域至少有一个安保小组,则这样的安排方法共有()A.96种B.100种C.124种D.150种2.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A.15B.20C.30D.423.我省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72B.108C.180D.2164.如图所示的是四张残差图,其中回归模型的拟合效果最好的是()5.在回归分析中,相关指数R2的值越大,说明残差平方和()A.越大B.越小C.可能大也可能小D.以上均错^^^^^6.若某地财政收入x与支出y满足回归方程y=bx+a+ei(单位:亿元)(i=1,2,…),其中b=0.8,a=2,|ei|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过()A.10亿元B.9亿元C.10.5亿元D.9.5亿元7.为研究女大学生体重和身高的关系,从某大学随机选取8名女大学生,其身高和体重数据如下表:身高x/cm165165157170175165155170体重y/kg4857505464614359^利用最小二乘法求得身高预报体重的回归方程为y=0.848x-85.632,据此可求得R2≈0.64.下列说法正确的是()A.两组变量的相关系数为0.64B.R2越趋近于1,表示两纽变量的相关关系越强C.女大学生的身高解释了64%的体重变化和诚高二理科数学周练4.11D.女大学生的身高差异有64%是由体重引起的8.在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大()adcaA.与B.与a+bc+da+bc+dacacC.与D.与a+bc+da+bb+c9.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关11+10.x2(1+x)6展开式中x2的系数为()A.15B.20C.30D.35二、填空题(4x5=20分)11.对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.^^12.已知方程y=0.85x-82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,y的单位是kg,那么针对某个体(160,53)的残差是________.13.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)14.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是________.①若K2的观测值k≈6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.三、简答题(30分)15.如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.和诚高二理科数学周练4.11为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模^型①:y=-30.4+13.5t;根据2010年至2016年的数据^(时间变量t的值依次为1,2,…,7)建立模型②:y=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个