预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖北省武汉市武昌区2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已如集合,,则()A.B.C.D.【答案】A【解析】【分析】求出集合A,B,然后进行交集的运算即可.【详解】由题意,集合,∴集合.故选:A.【点睛】本题主要考查了描述法、区间表示集合的定义,绝对值不等式的解法,以及交集的运算,着重考查了推理与运算能力,属于基础题.2.()A.B.C.D.【答案】C【解析】【分析】直接利用复数代数形式的乘除运算化简,即可得到答案.【详解】由,故选C.【点睛】本题主要考查了复数代数形式的乘除运算,着重考查了运算与求解能力,属于基础题.3.设,满足约束条件则的最大值为()A.B.C.D.【答案】C【解析】【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由得到,平移直线,当过A时直线截距最小,最大,由得到,所以的最大值为,故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4.某公司在年的收入与支出情况如下表所示:收入(亿元)支出y(亿元)根据表中数据可得回归直线方程为,依此名计,如果年该公司的收入为亿元时,它的支出为()A.亿元B.亿元C.亿元D.亿元【答案】B【解析】,,代入回归直线方程,,解得:,所以回归直线方程为:,当时,支出为亿元,故选B.5.在长方形中,为的中点,为的中点,设则()A.B.C.D.【答案】A【解析】【分析】由平面向量线性运算及平面向量基本定理,即可化简,得到答案.【详解】如图所示,由平面向量线性运算及平面向量基本定理可得:.【点睛】本题主要考查了平面向量的线性运算,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则和平面向量的基本定理是解答的关键,着重考查了推理与运算能力,属于基础题.6.若函数是奇函数,则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,选C.点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.7.如图,网格纸上小正方形的边长为,粗线条画出的是一个三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】【分析】由三视图得到该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.再由棱锥体积公式求解.【详解】由三视图还原原几何体,如图所示,该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.∴该三棱锥的体积.故选:B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.8.命题:,成立的一个充分但不必要条件为()A.B.C.D.【答案】A【解析】【分析】命题p的充分不必要条件是命题p所成立的集合的真子集,利用二次函数的性质先求出p成立所对应的集合,即可求解.【详解】由题意,令是一个开口向上的二次函数,所以对x恒成立,只需要,解得,其中只有选项A是的真子集.故选:A.【点睛】本题主要考查了充分不必要条件的应用,以及二次函数的性质的应用,其中解答中根据二次函数的性质,求得实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知圆与双曲线的渐近线相切,则的离心率为()A.B.C.D.【答案】B【解析】【分析】由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).10.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为()A.B.C.D.【答案】C【解析】【分析】正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.【详解】由题意可知,正三棱柱的底