预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

单元测试卷及组卷说明参考表单基本信息学科数学年级高一教师万金圣单位南莫中学课题《集合与函数》单元检测单元测试卷南莫中学高一年级数学第一次阶段检测满分:160分时间:120分填空题(本大题共14小题,每小题5分,共70分,请把答案填写在答题卡相应位置上)1.计算:2.集合_____________3.集合中所有元素的乘积为4.函数的定义域为5.函数为指数函数,则实数6.设集合,集合,则7.已知函数,则8.已知集合,,则9.已知是偶函数,且当时,,则当时,的解析式为10.函数在内递减,则的取值范围是11.已知函数是R上的增函数,且则实数的取值范围是12.已知函数,则______________13.函数的最大值是14.已知是定义在实数集R上的偶函数,且在上单调递增,则不等式的解集是二解答题(本大题6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(本题满分14分)已知,HYPERLINK"http:///"(1)若且,求的取值范围;(2)若,求的取值范围HYPERLINK"http:///"16.(本题满分14分)设,(1)若,求实数的值(2)若,求实数的值17.(本题满分15分)已知二次函数满足(1)求的解析式(2)当(为大于0的常数)时,求的最小值18.(本题满分15分)为了预防甲型H1N1流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示.据图中提供的信息,解答下列问题:(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室?19.(本题满分16分)已知定义域为的函数是奇函数。(1)求的值;(2)证明:函数在上是减函数;(3)若对任意的,不等式恒成立,求的取值范围。20.(本题满分16分)已知函数,对任意x,y∈R都有,当x<0时,>0,且(1)求的值(2)求证:函数为奇函数;(3)判断函数的的单调性,并求函数在[-2,1]上的最大值和最小值。组卷说明(试卷考查的主要范围、重点内容,考查的主要目标,题型特点,评价要求等)主要考查学生开学一个月来所学集合与函数部分的“三基”掌握情况,试题内容围绕所学内容,重点是集合的运算和函数的性质。考查的主要目标是看学生对知识的理解,方法的掌握和能力的运用等程度,题型为填空与解答。评价与高考接轨,结合学生的答题情况主要从三方面即难度,效度与区分度进行客观分析与评价。参考答案1-14填空题答案(略)15.解:(1)解得……………………7分(2)当当综上……………………14分16.解法一:(1)A={0,-4}……………………4分(2)∵∴BA,由A={0,-4},∴B=Φ,或B={0},或B={-4},或B={0,-4}当B=Φ时,方程无实数根,则=整理得解得;……………………7分当B={0}时,方程有两等根均为0,则解得;……………………9分当B={-4}时,方程有两等根均为-4,则无解;……………………11分当B={0,-4}时,方程的两根分别为0,-4,则解得……………………13分综上所述:……………………14分(2)另解:由,而,当,即时,,符合;当,即时,,符合;当,即时,中有两个元素,而;∴得∴17.解:(1)设,则有对任意实数x恒成立解之得---------------8分(2)当时,f(x)的最小值为当时,f(x)的最小值为……………………15分18.解:(1)由图象易知此函数是分段函数,当0≤t≤0.1时,设解析式为,由于图象经过点(0.1,1),代入函数的解析式得:,所以,;当时,函数为类指数型,且图象也经过点(0.1,1),代入中,可求得a=0.1.所以函数的关系式为:.……………………7分(2)由题意得:当空气中每立方米的含药量降低到0.25毫克以下时满足时的函数解析式,即,解得,所以至少需要经过0.6小时后,学生才能够进入教室.……………………15分19.解:(1)因为是奇函数,且定义域为R,所以,…………2分………………………………………4分(2)证明:由(Ⅰ)知,……………………5分令,则,………………………………………7分>0,即函数在R上为减函数………………………………………10分(3)是奇函数,因为减函数,,………………………………………………12分即对一切横成立,………………………………………………16分20.解:(1)令x=y=0得:………………………4分(2)证明:∵函数的定义域为R,令y=-x得,∴