预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局*CN102531553A*(12)发明专利申请(10)申请公布号CN102531553A(43)申请公布日2012.07.04(21)申请号201210002466.6(22)申请日2012.01.05(71)申请人西北工业大学地址710072陕西省西安市友谊西路127号(72)发明人苏海军张军于建政郭伟马菱薇张冰于瑞龙刘林傅恒志(74)专利代理机构西北工业大学专利中心61204代理人慕安荣(51)Int.Cl.C04B35/10(2006.01)C04B35/622(2006.01)权利要求书权利要求书1页1页说明书说明书77页页附图附图22页(54)发明名称一种制备氧化铝基共晶陶瓷的方法(57)摘要一种制备氧化铝基共晶陶瓷的方法,以激光快速成形表面气氛加热炉作为保温装置,通过对保温炉对保温温度的调节,影响激光区熔制备氧化物共晶陶瓷的工艺参数。当高能量激光辐照到成形材料上表面时,下表面在加热炉的作用下同时升高到较高温度,上下表面温差大幅减小,从而保证基材不会激热开裂,同时又可以保证熔体在冷却的过程中不会因激冷产生裂纹和缺陷,极大的提高了材料成形的质量和性能,并使得激光快速成形技术制备脆性材料成为可能,根据不同材料,可通过调整保温温度,实现不同的冷却速率和温度梯度。本发明有效降低了成形材料与周围环境的温差和材料内部的热应力,提高了材料成形的质量和性能,并使得激光快速成形技术制备脆性材料成为可能。CN10253ACN102531553A权利要求书1/1页1.一种制备氧化铝基共晶陶瓷的方法,其特征在于,包括以下步骤:步骤1,烧结预制体的制备;步骤2,表面气氛加热炉加热烧结预制体;将得到的部分烧结预制体并排紧密铺放在表面气氛加热炉的加热板上;向表面气氛加热炉内通入保护气体N2气;N2气流量100~150ml/min;对加热板加热,进而通过加热板对烧结预制体加热至1200℃;加热中,600℃以下以导通比为20%的速度加热,600℃以上以导通比为40%的速度加热;加热中持续保温,使试样温度与加热板温度一致;加热中持续通入N2气;得到加热后的共晶陶瓷基底;步骤3,成形共晶陶瓷;采用激光区熔方法成形共晶陶瓷的过程,其具体过程是:使激光器位于铺放在表面气氛加热炉加热板上的烧结预制体的起点处,启动激光器,将激光打入表面气氛加热炉内,对加热后的烧结预制体进行水平逐行扫描;当激光器完成第一行扫描后,沿铺放在加热板上的烧结预制体表面宽度平移,进行第二行的水平扫描,得到在烧结预制体表面形成的第二道共晶陶瓷;以此类推,激光器逐渐向烧结预制体的宽度方向推进,直至整个烧结预制体表面形成第一层共晶陶瓷;当第一层共晶陶瓷的成形完成后,将剩余的部分烧结预制体并排紧密铺放在第一层共晶陶瓷的表面;激光器回到起点,按成形第一层共晶陶瓷的方法,在得到的第一层共晶陶瓷表面继续成形第二层共晶陶瓷;当第二层共晶陶瓷的成形完成后,继续将剩余的烧结预制体并排紧密铺放在第二层共晶陶瓷的表面;激光器回到起点,按成形第一层共晶陶瓷的方法,在得到的第二层共晶陶瓷表面继续成形第三层共晶陶瓷;重复上述激光区熔成形共晶陶瓷的过程,得到所需的共晶陶瓷;成形共晶陶瓷中,激光功率为200~600W,激光扫描速度0.2~6mm/min,激光光斑直径为8~12mm,激光器沿共晶陶瓷基底宽度平移后相邻两行中心线的间距为7~10mm;在激光区熔过程中,表面气氛加热炉对试样持续加热,使试样的温度保持在1200℃,并通入N2气;步骤4,共晶体陶瓷冷却,当得到所需体积的共晶陶瓷后,关闭激光;表面气氛加热炉以10~20℃/min的降温速度冷却至800℃后,得到的共晶陶瓷随炉冷却至室温,获得共晶自生复合陶瓷体。2CN102531553A说明书1/7页一种制备氧化铝基共晶陶瓷的方法技术领域[0001]本发明涉及高性能材料激光快速成形制备领域,具体是一种利用激光快速成形表面气氛加热炉装置实现高熔点、高致密度、低热应力共晶陶瓷材料的制备技术。背景技术[0002]氧化物共晶自生陶瓷具有优异的高温强度、热稳定性、抗蠕变特性及高温抗氧化性,是近年来发展的有望在1650℃以上恶劣环境下长期使用的超高温结构材料。然而,迄今为止氧化物陶瓷材料的主要制备技术仍是粉末烧结法。由于粉末烧结陶瓷材料均为多晶组织,通常无法得到单晶组成相,陶瓷颗粒、基体和其他组成相(如增强相或增韧相)以及各组成相之间均存在着大量的弱连接界面,显微组织的均匀性和稳定性以及材料的孔隙率均难以消除,导致陶瓷材料高温力学性能锐减,极大的限制了陶瓷材料在超高温条件下的应用。利用激光快速成型这种新型成型技术可获得性能较好的氧化物共晶陶瓷,但该方法在激光快速成型的过程中产生巨大的热应力,导致试样容易开裂,共晶陶瓷属于脆性材料,更易开裂,因此