预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(江苏专用)2018版高考数学专题复习专题8立体几何第50练平行的判定与性质练习文训练目标会应用定理、性质证明直线与平面平行、平面与平面平行.训练题型证明空间几何体中直线与平面平行、平面与平面平行.解题策略(1)熟练掌握平行的有关定理、性质;(2)善于用分析法、逆推法寻找解题突破口,总结辅助线、辅助面的做法.1.(2016·徐州模拟)如图,四棱锥P-ABCD中,PD=PC,底面ABCD是直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.2.(2015·课标全国Ⅱ)如图,长方体ABCDA1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.3.(2016·辽宁五校协作体上学期期中)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=eq\r(2),AA1=2.(1)证明:AA1⊥BD;(2)证明:平面A1BD∥平面CD1B1;(3)求三棱柱ABD-A1B1D1的体积.4.如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:MN∥AB;(2)求证:CE∥平面PAD.答案精析1.证明(1)因为在直角梯形ABCD中,AB∥CD,CD=2AB,点M是CD的中点,所以AB∥CM,且AB=CM,又AB⊥BC,所以四边形ABCM是矩形,所以AM∥BC,又因为BC⊂平面PBC,AM⊄平面PBC,故AM∥平面PBC.(2)连结PM,因为PD=PC,点M是CD的中点,所以CD⊥PM,又因为四边形ABCM是矩形,所以CD⊥AM,因为PM⊂平面PAM,AM⊂平面PAM,PM∩MA=M,所以CD⊥平面PAM.又因为PA⊂平面PAM,所以CD⊥PA.2.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=eq\r(EH2-EM2)=6,AH=10,HB=6.故S四边形A1EHA=eq\f(1,2)×(4+10)×8=56,S四边形EB1BH=eq\f(1,2)×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为eq\f(9,7)(eq\f(7,9)也正确).3.(1)证明∵底面ABCD是正方形,∴BD⊥AC.∵A1O⊥平面ABCD,BD⊂平面ABCD,∴A1O⊥BD.∵A1O∩AC=O,A1O⊂平面A1AC,AC⊂平面A1AC,∴BD⊥平面A1AC.∵AA1⊂平面A1AC,∴AA1⊥BD.(2)证明∵A1B1∥AB,AB∥CD,∴A1B1∥CD.∵A1B1=CD,∴四边形A1B1CD是平行四边形,∴A1D∥B1C,同理A1B∥D1C,∵A1B⊂平面A1BD,A1D⊂平面A1BD,CD1⊂平面CD1B1,B1C⊂平面CD1B1,且A1B∩A1D=A1,CD1∩B1C=C,∴平面A1BD∥平面CD1B1.(3)解∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.在正方形ABCD中,AB=eq\r(2),可得AC=2.在Rt△A1OA中,AA1=2,AO=1,∴A1O=eq\r(3),∴V三棱柱ABD-A1B1D1=S△ABD·A1O=eq\f(1,2)×(eq\r(2))2×eq\r(3)=eq\r(3).∴三棱柱ABD-A1B1D1的体积为eq\r(3).4.证明(1)因为M,N为PD,PC的中点,所以MN∥DC,又因为DC∥AB,所以MN∥AB.(2)方法一如图,取PA的中点H,连结EH,DH.因为E为PB的中点,所以EH綊eq\f(1,2)AB.又CD綊eq\f(1,2)AB,所以EH綊CD.所以四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD.所以CE∥平面PAD.方法二如图,连结CF.因为F为AB的中点,所以AF=eq\f(1,2)AB.又CD=eq\f(1,2)AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD,又AD⊂平面PAD,CF⊄平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又PA⊂平面PAD