高考数学三轮冲刺 大题提分 大题精做11 函数与导数:参数与分类讨论 文-人教版高三全册数学试题.docx
书生****专家
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高考数学三轮冲刺 大题提分 大题精做11 函数与导数:参数与分类讨论 文-人教版高三全册数学试题.docx
大题精做11函数与导数:参数与分类讨论[2019·揭阳毕业]已知函数(,).(1)讨论函数的单调性;(2)当时,,求的取值范围.【答案】(1)见解析;(2)或.【解析】(1),①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设,则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,
2019高考数学三轮冲刺 大题提分 大题精做11 函数与导数:参数与分类讨论 文.docx
7大题精做11函数与导数:参数与分类讨论[2019·揭阳毕业]已知函数(,).(1)讨论函数的单调性;(2)当时,,求的取值范围.【答案】(1)见解析;(2)或.【解析】(1),①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设,则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而
高考数学三轮冲刺 大题提分 大题精做13 函数与导数:参数与分类讨论 理-人教版高三全册数学试题.docx
大题精做13函数与导数:参数与分类讨论[2019·揭阳毕业]已知函数(,).(1)讨论函数的单调性;(2)当时,,求的取值范围.【答案】(1)见解析;(2)或.【解析】(1),①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设,则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,
2019高考数学(文)冲刺大题提分练习:大题精做11 函数与导数:参数与分类讨论(文)(教师版) WORD版含解析.doc
函数与导数:参数与分类讨论大题精做十一精选大题[2019·揭阳毕业]已知函数(,).(1)讨论函数的单调性;(2)当时,,求的取值范围.【答案】(1)见解析;(2)或.【解析】(1),①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设,则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时
高考数学三轮冲刺 大题提分 大题精做13 函数与导数:极值点不可求与构造 文-人教版高三全册数学试题.docx
大题精做13函数与导数:极值点不可求与构造[2019·厦门三中]已知函数,.(1)讨论的极值;(2)若对任意恒成立,求实数的取值范围.【答案】(1)当时,无极值;当时,有极大值,无极小值;(2).【解析】(1)依题意,①当时,,在上单调递增,无极值;②当时,,当时,,在上单调递增;当时,,在上单调递减,所以,无极小值.综上可知,当时,无极值;当时,有极大值,无极小值.(2)原不等式可化为,记,只需,可得.①当时,,,所以,在上单调递增,所以当时,,不合题意,舍去.②当时,,(i)当时,因为,所以,所以,所