2010高三数学高考《数列》专题学案:等比数列.doc
雨巷****碧易
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
2010高三数学高考《数列》专题学案:等比数列.doc
基础过关第3课时等比数列1.等比数列的定义:=q(q为不等于零的常数).2.等比数列的通项公式:⑴an=a1qn-1⑵an=amqn-m3.等比数列的前n项和公式:Sn=4.等比中项:如果abc成等比数列那么b叫做a与c的等比中项即b2=(或b=).5.等比数列{an}的几个重要性质:⑴mnpq∈N*若m+n=p+q则.⑵Sn是等比数列{an}的前n项和且Sn≠0则SnS2n-SnS3n-S2n成数列.⑶若等
2010高三数学高考《数列》专题学案:等比数列.doc
基础过关第3课时等比数列1.等比数列的定义:=q(q为不等于零的常数).2.等比数列的通项公式:⑴an=a1qn-1⑵an=amqn-m3.等比数列的前n项和公式:Sn=4.等比中项:如果a,b,c成等比数列,那么b叫做a与c的等比中项,即b2=(或b=).5.等比数列{an}的几个重要性质:⑴m,n,p,q∈N*,若m+n=p+q,则.⑵Sn是等比数列{an}的前n项和且Sn≠0,则Sn,S2n-Sn,S3n-S2n成数列.⑶若等比数列{an}的前n项和Sn满足{Sn}是等差数列,则{an}的公比q=.
2010高三数学高考《数列》专题学案:等差数列和等比数列的综合应用.doc
第4课时等差数列和等比数列的综合应用基础过关1.等差数列的常用性质:⑴m,n,p,r∈N*,若m+n=p+r,则有.⑵{an}是等差数列,则{akn}(k∈N*,k为常数)是数列.⑶Sn,S2n-Sn,S3n-S2n构成数列.2.在等差数列中,求Sn的最大(小)值,关键是找出某一项,使这一项及它前面的项皆取正(负)值或0,而它后面的各项皆取负(正)值.⑴a1>0,d<0时,解不等式组可解得Sn达到最值时n的值.⑵a1<0,d>0时,解不等式组可解得Sn达到最小值时n的值.3.等比数列的常用性质:⑴m,n,
2010高三数学高考《数列》专题学案:数列的概念.doc
第1课时数列的概念基础过关1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an是数列{an}的第项.2.数列的通项公式一个数列{an}的与之间的函数关系,如果可用一个公式an=f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{an}中,前n项和Sn与通项an的关系为:4.求数列的通项公式的其它方法⑴公式法:等差数列与等比数列采用首项与公差(公比)
2010高三数学高考《数列》专题学案:等差数列.doc
第2课时等差数列基础过关1.等差数列的定义:-=d(d为常数).2.等差数列的通项公式:⑴an=a1+×d⑵an=am+×d3.等差数列的前n项和公式:Sn==.4.等差中项:如果a、b、c成等差数列,则b叫做a与c的等差中项,即b=.5.数列{an}是等差数列的两个充要条件是:⑴数列{an}的通项公式可写成an=pn+q(p,q∈R)⑵数列{an}的前n项和公式可写成Sn=an2+bn(a,b∈R)6.等差数列{an}的两个重要性质:⑴m,n,p,q∈N*,若m+n=p+q,则.⑵数列{an}的前n项和