一种基于深度卷积神经网络的炉膛水冷壁异常识别算法.pdf
宛菡****魔王
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于深度卷积神经网络的炉膛水冷壁异常识别算法.pdf
本发明提供了一种基于深度卷积神经网络的炉膛水冷壁异常识别算法,通过预先获得炉膛水冷壁管道的图像数据,建立并训练深度卷积神经网络模型,训练好的深度卷积神经网络模型可以判断其异常情况,包括:磨损,机械损伤以及正常,再将获得的管道实时数据进行归一化预处理后,送入训练好的深度卷积神经网络模型,通过训练好的卷积神经网络模型获得预测结果,解决了目前火力发电厂对冷却管水冷壁的检测识别分类存在识别不精准,分类不准确等问题。
基于深度卷积神经网络的异常心音识别算法.docx
基于深度卷积神经网络的异常心音识别算法基于深度卷积神经网络的异常心音识别算法摘要心音异常是一种常见的心血管疾病,及时准确地识别异常心音对于预防和治疗心血管疾病具有重要意义。本论文提出了一种基于深度卷积神经网络(CNN)的异常心音识别算法。首先,我们介绍了异常心音的相关背景和特点。然后,我们详细描述了CNN的原理和结构,并提出了一种基于CNN的心音异常识别模型。在模型训练阶段,我们采用了大规模的异常心音数据集,并使用了数据增强和交叉验证等技术来提高模型的泛化能力和鲁棒性。在实验部分,我们使用了国际上公开的心
基于多层卷积神经网络的变电站异常场景识别算法.docx
基于多层卷积神经网络的变电站异常场景识别算法基于多层卷积神经网络的变电站异常场景识别算法摘要:变电站是供电系统中重要组成部分,其安全稳定运行对电力系统的正常运行至关重要。然而,变电站存在着许多潜在的故障和异常情况,如过流、短路、火灾等。因此,快速准确地识别和定位变电站的异常场景对于确保电力系统的安全运行具有重要意义。本文提出了一种基于多层卷积神经网络的变电站异常场景识别算法,通过对变电站的图像数据进行深度学习,实现对变电站异常场景的自动识别。关键词:变电站,异常场景识别,卷积神经网络,深度学习1.引言随着
一种基于深度卷积神经网络的面部图像识别算法.pdf
一种基于深度卷积神经网络的面部图像识别算法,采用阈值法和形态学法对面部图像进行预切割处理;采用全卷积神经网络结合多示例学习方法构建基础系统结构,将多语义上下文特征融合与空洞残差操作块结合,嵌入基础系统结构中,保留系统对图像空间信息的感知,同时实现面部图像分类和怀疑区域定位;模型训练阶段的损失函数分为两方面,其一是利用图像级标签计算图像的良恶性二分类交叉熵损失,其二是利用少量定位框标签计算示例的良恶性二分类交叉熵损失,两者进行加权和,得到总损失函数,用于训练模型参数。对输入的面部图像进行预切割处理后,输入系
基于快速分割卷积神经网络的水冷壁表面缺陷视频识别方法.pdf
基于快速分割卷积神经网络的水冷壁表面缺陷视频识别方法涉及锅炉设备自动化缺陷检测领域。本发明通过使用改进的Fast‑SCNN训练识别水冷壁表面缺陷的缺陷检测模型,使用该检测模型结合选择性搜索算法,运用一定的视频材料处理手段对视频形式的水冷壁表面资料进行缺陷的检测识别工作。该方法可以有效对水冷壁表面获取的视频文件进行缺陷的检测和识别,具有较高的识别准确率,是实现锅炉水冷壁表面缺陷检测自动化的有效手段途径,帮助解决了人工检测缺陷周期长、耗费多、效率低下等问题。