预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学常用的数学思想方法有哪些初中数学涉及到的思想方法很多,在此仅仅谈谈常见的八种思想方法:一、用字母表示数的思想这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。例如:设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。1、数轴上的点与实数的一一对应的关系。2、平面上的点与HYPERLINK"http://www.so.com/s?q=%E6%9C%89%E5%BA%8F%E5%AE%9E%E6%95%B0%E5%AF%B9&ie=utf-8&src=wenda_link"\t"_blank"有序实数对的一一对应的关系。3、函数式与图像之间的关系。4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。三、转化思想(化归思想)在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:1、HYPERLINK"http://www.so.com/s?q=%E5%88%86%E5%BC%8F%E6%96%B9%E7%A8%8B&ie=utf-8&src=wenda_link"\t"_blank"分式方程的求解是分式方程转化为前面学过的HYPERLINK"http://www.so.com/s?q=%E4%B8%80%E5%85%83%E4%BA%8C%E6%AC%A1%E6%96%B9%E7%A8%8B%E6%B1%82%E8%A7%A3&ie=utf-8&src=wenda_link"\t"_blank"一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.四、分类思想有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。五、类比思想类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.1.不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一元一次方程的解法等做类比。2.通过有理数的相反数、绝对值、运算律等得到实数的相反数、绝对值、运算律等知识。3.在HYPERLINK"http://www.so.com/s?q=%E4%BA%8C%E6%AC%A1%E6%A0%B9%E5%BC%8F&ie=utf-8&src=wenda_link"\t"_blank"二次根式加减的运算中,指出“合并HYPERLINK"http://www.so.com/s?q=%E5%90%8C%E7%B1%BB%E4%BA%8C%E6%AC%A1%E6%A0%B9%E5%BC%8F&ie=utf-8&src=wenda_link"\t"_blank"同类二次根式与合并同类项”类似。因此,二次根式的加减可以对比整式的加减进行。4.“角的度量、角的比较大小、角的和、差及平分线”,可与线段的相关知识进行类比;度、分、秒的运算可与时、分、秒的运算进行类比。5.相似多边形的性质和相似三角形的性质类比。六、函数的思想辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。教材把函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函数的思想方法。例如:进行求代数式的值的教学时,通过强调解题的第一步“当……时”的依据,渗透函数的思想方法--字母每取一