机器学习模型的训练方法和装置、图像的分类方法和装置.pdf
慧颖****23
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
机器学习模型的训练方法和装置、图像的分类方法和装置.pdf
本公开涉及一种机器学习模型的训练方法和装置、图像的分类方法和装置,涉及人工智能技术领域。该训练方法包括:利用第一机器学习模型,提取待处理图片的特征向量,根据特征向量确定待处理图片的第一分类结果,待处理图片属于第一数据域或第二数据域;根据特征向量,利用第二机器学习模型,确定待处理图片的第二分类结果,第二分类结果包括待处理图片在第一数据域中的分类结果和在第二数据域中的分类结果;根据第一分类结果和第二分类结果,对第一机器学习模型和第二机器学习模型进行对抗训练,使得第二分类结果的准确率低于阈值,训练好的第一机器学
机器学习模型的训练方法、装置和图像的分类方法、装置.pdf
本公开涉及一种机器学习模型的训练方法、装置和图像的分类方法、装置,涉及计算机技术领域。该机器学习模型的训练方法,包括:利用第一机器学习模型对未被标注的目标领域图像进行分类,确定第一目标领域分类结果;利用第二机器学习模型对已被标注的源领域图像进行分类,确定第二源领域分类结果;在第一目标领域分类结果与第二源领域分类结果对应同一个图像类型的情况下,将目标领域图像和源领域图像确定为正样本图像对;根据正样本图像对的第一目标领域特征向量与第二源领域特征向量之间的正样本差异,训练第一机器学习模型和第二机器学习模型。
模型训练方法、图像分类方法和装置.pdf
本公开的实施例提供了一种模型训练方法、图像分类方法和装置。所述模型训练方法包括:首先获取训练样本集,该训练样本集包括样本物品对应的样本图像和样本图像的样本分类结果,样本图像由样本物品对应的样本首图和样本主图组成,然后构建包括残差神经网络和分类网络的初始模型,最后利用机器学习方法,将样本图像作为残差神经网络的输入,获取样本首图对应的第一特征向量和样本主图对应的第二特征向量,将残差神经网络输出的第一特征向量和第二特征向量作为分类网络的输入,样本图像的样本分类结果作为期望输出,对初始模型进行训练,得到图像分类模
模型训练方法、图像分类方法和装置.pdf
本公开的实施例提供的一种模型训练方法,包括:响应于获取到包括样本图像、样本图像对应的标注信息和查询图像,构建样本图像和查询图像对应的图像对,并构建包括局部特征提取器、语义特征提取器和分类判别器的小样本学习网络,将图像对输入局部特征提取器进行局部特征提取,得到样本图像对应的第一局部特征和查询图像对应的第二局部特征,将第一局部特征和第二局部特征分别输入语义特征提取器进行语义特征提取,得到第一局部特征对应的第一语义特征和第二局部特征对应的第二语义特征,并将第一局部特征和第一语义特征、第二局部特征和第二语义特征分
机器学习模型训练方法和装置.pdf
本发明涉及一种机器学习模型训练方法和装置,包括:获取在本轮清洗脏样本数据前已有纯净样本数据;根据已有纯净样本数据和机器学习模型的当前模型参数,确定该模型的损失函数的第一二阶平均梯度;根据本轮从脏样本数据中取部分脏样本数据清洗后得到的纯净样本数据和当前模型参数,确定损失函数的第二二阶平均梯度;根据第一二阶平均梯度和第二二阶平均梯度,获得损失函数的整体二阶平均梯度;根据整体二阶平均梯度调整当前模型参数;若调整后的模型参数不满足训练结束条件,将下一轮作为本轮,返回获取在本轮清洗脏样本数据前已有纯净样本数据的步骤