目标识别模型训练方法和装置、目标识别方法和装置.pdf
书生****aa
亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
目标识别模型训练方法和装置、目标识别方法和装置.pdf
本公开提供了一种目标识别模型训练方法和装置,涉及计算机视觉、深度学习等技术领域。该方法的一具体实施方式包括:基于获取的原始数据,得到无标注数据和标注数据;获取预先建立的目标识别网络;执行以下训练步骤:将选取的无标注数据和选取的标注数据输入目标识别网络,计算选取的无标注数据中第一数据和增强后的第一数据的一致性损失,得到无标注损失值;计算选取的标注数据的交叉熵损失、选取的标注数据中处理数据和增强后的处理数据的一致性损失,得到标注损失值;基于无标注损失值和标注损失值,计算目标识别网络的损失值;若目标识别网络满足
目标重识别模型的训练方法以及目标重识别方法和装置.pdf
本公开提出一种目标重识别模型的训练方法以及目标重识别方法和装置,涉及计算机技术领域。在本公开中,利用训练图像的各个局部区域所对应的空域特征所构成的空域特征矩阵对全卷积神经网络进行训练,并根据损失函数来优化全卷积神经网络,得到目标重识别模型。在目标重识别时,利用目标重识别模型可以获取待识别图像的各个局部区域所对应的空域特征所构成的空域特征矩阵,利用待识别图像的每个空域特征(即局部特征)去匹配候选图像的各个空域特征,再根据待识别图像的所有空域特征与候选图像的匹配度综合确定待识别图像与候选图像的匹配度,在待识别
模型训练方法和目标识别方法、装置、设备及介质.pdf
本发明公开了一种网络匹配模型的训练方法及目标识别方法、装置、设备及介质,由于本发明实施例在对网络匹配模型进行训练时,分别通过第一特征提取网络和第二特征提取网络,获得待检测目标的模板图片和样本图片的第一特征图和第二特征图,根据在样本图片中标注的第一位置信息和在第二特征图中确定的第二位置信息,分别确定第一特征提取网络和第二特征提取网络的参数的参数值,从而使第一特征提取网络和第二特征提取网络,分别学习到模板图片和样本图片的特征,有助于提高两个特征提取网络提取特征的区分度,进而可以对搜索范围进行调整,保证了后续识
声线识别模型的训练方法和装置、声线识别方法和装置.pdf
本公开关于一种声线识别模型的训练方法和装置、声线识别方法和装置。其中,声线识别模型的训练方法包括:获取多个语音样本,每个语音样本携带有语音输出对象标签;对多个语音样本进行聚类处理,得到多个语音样本集合;其中,携带有同一语音输出对象标签的语音样本归入的语音样本集合相同;从每个语音样本集合中抽取预设数量个抽样语音样本,获取预设数量个抽样语音样本的第一声线类型标签;根据预设数量个第一声线类型标签中满足预设条件的目标第一声线类型标签,得到相应语音样本集合对应的第二声线类型标签;根据每个语音样本集合中的语音样本及对
意图识别模型的训练方法和装置及意图识别方法和装置.pdf
本说明书实施例描述了意图识别模型的训练方法和装置及意图识别方法和装置。根据实施例的方法,可以在模型训练的前几轮弱化对特定问题的训练,然后利用前几轮训练的意图识别模型可以找出需要进行区分的回答所对应的意图。进一步通过对这些意图的标签进行重置后再训练意图识别模型,能够使得训练得到的意图识别模型对特定问题的回答也具有较好的识别效果,从而达到提高意图识别准确性的目的。