预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

如何计算时针与分针夹角的度数 在初中数学学习中,钟表问题经常出现,计算起来也比较难,其中计算时针与分针夹角度数的问题就困扰着我们中学生。其计算方法很多,但如何计算更便捷在实际学习过程中似乎缺少总结。本文结合自己学习过程中的体会,总结其计算规律如下。 一、知识预备 (1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角; (2)钟表上的每一个大格(时针的一小时或分针的5分钟)对应的角度是:; (3)时针每走过1分钟对应的角度应为:; (4)分针每走过1分钟对应的角度应为:。 二、计算举例 例1.如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。 解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。 分针走过的角度为:55×6°=330° 时针走过的角度为: 则时针与分针夹角的度数为: 例2.如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。 解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。 时针走过的角度为: 分针走过的角度为: 则时针与分针夹角的度数为: 三、总结规律 从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。 用字母和公式表示: 当时间为m点n分时,其时针与分针夹角的度数为: (1)分针在时针前面: (2)分针在时针后面: 依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。如果题目中涉及到秒,我们可以先把秒换算为分,再套用上述规律和公式进行计算即可。 如何计算时针与分针夹角的度数 在初中数学学习中,钟表问题经常出现,计算起来也比较难,其中计算时针与分针夹角度数的问题就困扰着我们中学生。其计算方法很多,但如何计算更便捷在实际学习过程中似乎缺少总结。本文结合自己学习过程中的体会,总结其计算规律如下。 一、知识预备 (1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角; (2)钟表上的每一个大格(时针的一小时或分针的5分钟)对应的角度是:; (3)时针每走过1分钟对应的角度应为:; (4)分针每走过1分钟对应的角度应为:。 二、计算举例 例1.如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。 解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。 分针走过的角度为:55×6°=330° 时针走过的角度为: 则时针与分针夹角的度数为: 例2.如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。 解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。 时针走过的角度为: 分针走过的角度为: 则时针与分针夹角的度数为: 三、总结规律 从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。 用字母和公式表示: 当时间为m点n分时,其时针与分针夹角的度数为: (1)分针在时针前面: (2)分针在时针后面: 依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。如果题目中涉及到秒,我们可以先把秒换算为分,再套用上述规律和公式进行计算即可。