预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共106页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一课时直线与平面垂直的概念和判定问题提出直线与平面垂直的概念和判定知识探究(一):直线与平面垂直的概念思考2:将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?思考3:如图,在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,影子BC的位置在移动,在各时刻旗杆AB所在直线与影子BC所在直线的位置关系如何?思考4:上述旗杆与地面、书脊与桌面的位置关系,称为直线与平面垂直.一般地,直线与平面垂直的基本特征是什么?怎样定义直线与平面垂直?思考5:在图形上、符号上怎样表示直线与平面垂直?思考6:如果直线l与平面α垂直,则直线l叫做平面α的垂线,平面α叫做直线l的垂面,它们的交点叫做垂足.那么过一点可作多少条平面α的垂线?过一点可作多少个直线l的垂面?知识探究(二):直线与平面垂直的判定思考2:我们需要寻求一个简单可行的办法来判定直线与平面垂直.思考3:如图,将一块三角形纸片ABC沿折痕AD折起,把翻折后的纸片竖起放置在桌面上,使BD、DC与桌面接触,观察折痕AD与桌面的位置关系.思考4:由上可知当折痕AD垂直平面α内的两条相交直线时,折痕AD与平面垂直.由此我们是否能得出直线与平面垂直的判定方法?定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.思考6:如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直吗?理论迁移例2在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB的中点,求证:AD⊥PC.例3侧棱与底面垂直的棱柱称为直棱柱.在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足什么条件时,有A1C⊥B1D1,说明你的理由.D.小结作业第二课时直线和平面所成的角问题提出直线和平面所成的角知识探究(一):平面的斜线思考2:过斜线上斜足外一点向平面引垂线,连结垂足和斜足的直线叫做这条斜线在这个平面上的射影.那么斜线l在平面α内的射影有几条?思考4:如图,过平面α外一点P引平面α的两条斜线段PA、PB,斜足为A、B,再过点P引平面α的垂线,垂足为O,如果PA>PB,那么OA与OB的大小关系如何?反之成立吗?思考5:如图,过平面α内一点P引平面α的两条斜线PA、PB,这两条斜线段在平面α内的射影分别为PC、PD,如果PA>PB,那么PC与PD的大小关系确定吗?思考6:如图,直线l是平面α的一条斜线,它在平面α内的射影为b,直线a在平面α内,如果a⊥b,那么直线a与直线l垂直吗?为什么?反之成立吗?知识探究(二):直线和平面所成的角思考2:如图,AB为平面α的一条斜线,A为斜足,AC为平面α内的任意一条直线,能否用∠BAC反映斜线AB与平面α的相对倾斜度?为什么?思考3:反映斜线与平面相对倾斜度的平面角的顶点为斜足,角的一边在斜线上,另一边在平面内的哪个位置最合适?为什么?思考4:我们把平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.在实际应用或解题中,怎样去求这个角?思考5:特别地,当一条直线与平面垂直时,规定它们所成的角为90°;当一条直线和平面平行或在平面内时,规定它们所成的角为0°.这样,任何一条直线和一个平面的相对倾斜度都可以用一个角来反映,那么直线与平面所成的角的取值范围是什么?思考6:如图,∠BAD为斜线AB与平面α所成的角,AC为平面α内的一条直线,那么∠BAD与∠BAC的大小关系如何?思考7:两条平行直线与同一个平面所成的角的大小关系如何?反之成立吗?一条直线与两个平行平面所成的角的大小关系如何?思考8:过平面α外一点P引平面α的斜线,斜足为A,若斜线PA与平面α所成的角为50°,那么点A在平面α内的运动轨迹是什么图形?理论迁移例2如图,AB为平面α的一条斜线,B为斜足,AO⊥平面α,垂足为O,直线BC在平面α内,已知∠ABC=60°,∠OBC=45°,求斜线AB和平面α所成的角.作业:P67练习:2.P74习题2.3A组:9.2.3.2平面与平面垂直的判定问题提出2.在铁路、公路旁,为防止山体滑坡,常用石块修筑护坡斜面,并使护坡斜面与水平面成适当的角度;修筑水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度,如何从数学的观点认识这种现象?二面角及其平面角知识探究(一):二面角的有关概念思考2:将一条直线沿直线上一点折起,得到的平面图形是一个角,将一个平面沿平面上的一条直线折起,得到的空间图形称为二面角,你能画一个二面角的直观图吗?思考3:在平面几何中,我们把角定义为“从一点出发的两条射线所组成的图形叫做角”,按照这种定义方式,二面角的定义如何?思考4:下列两个二面角在摆放上有什么不同?思考5:一个二面角是由一条直线和两个半