预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二数学正弦定理和余弦定理的知识点归纳高二数学关于正弦定理和余弦定理的知识点归纳首先,我们要了解下正弦定理的应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的`转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦正弦定理在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)其次,余弦的应用领域余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。正弦定理的变形公式(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA:sinB:sinC=a:b:c;在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题(3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)c/sinC=c/sinD=BD=2R(R为外接圆半径)(4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2RasinB=bsinA,bsinC=csinB,asinC=csinA(5)a=bsinA/sinBsinB=bsinA/a正弦、余弦典型例题1。在△ABC中,C=90,a=1,c=4,则sinA的值为2。已知为锐角,且,则的度数是()A。30B。45C。60D。903。在△ABC中,若,B为锐角,则C的度数是()A。75B。90C。105D。1204。若A为锐角,且,则A=()A。15B。30C。45D。605。在△ABC中,AB=AC=2,ADBC,垂足为D,且AD=,E是AC中点,EFBC,垂足为F,求sinEBF的值。正弦、余弦解题诀窍1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理2、已知三边,或两边及其夹角用余弦定理3、余弦定理对于确定三角形形状非常有用,只需要知道最大角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。以上就是由数学网为您提供的高二数学知识点:正弦定理和余弦定理详解,希望给您带来帮助!