矿区语义分割模型构建方法、装置及矿区语义分割方法.pdf
一只****ng
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
矿区语义分割模型构建方法、装置及矿区语义分割方法.pdf
本发明提供了矿区语义分割模型构建方法、装置及矿区语义分割方法,涉及矿区地物遥感分类领域,方法包括:获取原始矿区影像数据;对原始矿区影像数据进行预处理,得到原始矿区多光谱数据和原始矿区数字高程模型数据;对原始矿区多光谱数据和原始矿区数字高程模型数据进行分类体系构建,得到匹配的原始矿区地物分类标记数据;通过原始矿区多光谱数据、原始矿区数字高程模型数据和原始矿区地物分类标记数据对预设的原始HRNet模型进行训练和参数调优,得到基于HRNet的矿区语义分割模型。解决了现有基于语义分割方法的矿区分类精度低的问题。
语义分割模型训练方法及装置、图像语义分割方法及装置.pdf
本公开提供了一种语义分割模型训练方法、图像语义分割方法、语义分割模型训练装置、图像语义分割装置、电子设备和计算机可读存储介质,其中语义分割模型训练方法包括:获取训练集,训练集包括图像以及对应的标注信息;将图像进行特征提取,得到图像的特征数据;基于特征数据,得到第一分割框信息以及第一语义分割信息;基于特征数据、第一分割框信息以及第一语义分割信息,得到图像的第二分割框信息以及第二语义分割信息;基于第二分割框信息与标注信息、和/或基于第二语义分割信息与标注信息,确定损失值;基于损失值,调整语义分割模型的参数。语
语义分割方法和语义分割装置.pdf
本申请提供了一种语义分割方法和语义分割装置,有利于提高语义分割结果准确率。该方法包括:获取目标图像,该目标图像包括航拍得到的RGB图像和深度图像,该深度图像是根据该RGB图像确定的;将该目标图像输入至语义分割网络,通过该语义分割网络对该目标图像进行特征提取,获取该目标图像的深度信息和语义信息,该特征提取包括细节特征提取、边缘特征提取、深度特征提取以及上下文特征提取;通过该语义分割网络对该深度信息和该语义信息进行特征融合,得到该目标图像的语义分割图像。
基于生成对抗网络的图像语义分割模型构建方法和装置.pdf
本申请公开了一种基于生成对抗网络的图像语义分割模型构建方法和装置,该方法使用分割模型训练源域数据集,再使用生成对抗网络将源域数据集转换为新的目标域数据集,该新的目标域数据集保留了源域数据集中图像的结构特征但同时具有目标域数据集的全局特征,因此使用新的目标域数据集微调源域分割模型将降低源域和目标域的域移位影响,并且不会对数据的其他图像特征产生负影响,提高了图像语义分割模型的泛化能力,提高了自适应图像语义分割模型的精度和效率。如此,通过使用生成对抗网络有效的减少了源域和目标域间域移位的影响,提高了自适应图像语
一种视频语义分割装置、训练方法以及视频语义分割方法.pdf
本申请实施例提供一种视频语义分割装置、训练方法以及视频语义分割方法,其中,所述视频语义分割方法包括:从待分割视频中获取与当前帧图像相邻的图像作为所述当前帧图像的参考图像;获取至少一帧参考图像中各参考图像的图像特征以及语义识别结果,其中,所述至少一帧参考图像是在视频序列中与当前帧图像相邻的前一帧或多帧图像;将所述各参考图像的图像特征、所述各参考图像的语义识别结果和所述当前帧图像输入视频语义分割模型,得到所述当前帧图像的语义分割结果。与相关技术既提升了语义分割的准确度又提升了语义分割的速度,并最终实现了实时的